destabilization in 1a as a result of cyclobutadiene character in
the anion. This view is consistent with the structure of 1a, its
charge distribution, and Bader parameters such as the bond
critical point, bond order, and ellipticity. It also is interesting to
note that while resonance delocalization accounts for about two
thirds of the stabilization in acetaldehyde enolate (i.e., the
rotational barrier is 36 kcal molϪ1 at the MP2/6-31ϩG(d)//HF/
6-31ϩG(d) level52 but ∆∆HЊacid(ethane Ϫ acetaldehyde) = 54
kcal molϪ1) the contribution in 11a, and presumably 1a, is much
larger (i.e., the rotational barrier about the PhCHϪ–CHO bond
is 26.7 kcal molϪ1 compared to ∆∆HЊacid(ethylbenzene Ϫ phenyl-
acetaldehyde) = 31 kcal molϪ1).53
American Chemical Society, the Minnesota Supercomputer
Institute, and the University of Minnesota – IBM Shared
Research Project is gratefully acknowledged.
References
1 B. M. Trost and I. Fleming, Comprehensive Organic Synthesis:
Selectivity, Strategy and Efficiency in Modern Organic Chemistry,
Pergamon Press, New York, 1991.
2 B. A. Lorsbach and M. J. Kurth, Chem. Rev., 1999, 99, 5149.
3 M. P. Cava and K. Muth, J. Am. Chem. Soc., 1960, 82, 652.
4 Reported deuterium incorporation into benzocyclobutenone via 1a
was later retracted (see ref. 5). H. Hart and R. W. Fish, J. Am. Chem.
Soc., 1960, 82, 749.
The conjugate base of cyclobutenone (8a) is the simplest
5 H. Hart, J. A. Hartlage, R. W. Fish and R. R. Rafos, J. Org. Chem.,
1966, 31, 2244.
6 D. J. Bertelli and P. Crews, J. Am. Chem. Soc., 1968, 90, 3889.
7 T. Matsumoto, T. Hamura, Y. Kuriyama and K. Suzuki,
Tetrahedron Lett., 1997, 38, 8985.
8 M. E. Jones, S. R. Kass, J. Filley, R. M. Barkley and G. B. Ellison,
J. Am. Chem. Soc., 1985, 107, 109.
9 J. E. Bartmess, R. L. Hays and G. Caldwell, J. Am. Chem. Soc.,
1981, 103, 1338.
10 M. D. Brickhouse and R. R. Squires, J. Am. Chem. Soc., 1988, 110,
2706.
enolate which can have cyclobutadiene character.54 In contrast
to benzoannelation of cyclobutanone enolate, introduction of a
double bond is highly disfavored [eqn. (18) and (19)]. At the
11 M. D. Brickhouse and R. R. Squires, J. Phys. Org. Chem., 1989, 2,
389.
12 R. N. Hayes, R. P. Grese and M. L. Gross, J. Am. Chem. Soc., 1989,
111, 8336.
13 I. L. Freriks, L. J. de Koning and N. M. M. Nibbering, J. Am. Chem.
Soc., 1991, 113, 9119.
14 I. L. Freriks, L. J. de Koning and N. M. M. Nibbering, J. Phys. Org.
Chem., 1992, 5, 776.
15 Trifluoroacetyl chloride has been proposed as a reagent which gives
a higher percentage of O-alkylation. However, the percentage of
oxygen reactivity is based on detection of chloride which can,
in principle, arise from either C- or O-attack. B. D. Wladkowski,
J. L. Wilbur, M. Zhong and J. I. Brauman, J. Am. Chem. Soc., 1993,
115, 8833.
16 M. Zhong and J. I. Brauman, J. Am. Chem. Soc., 1996, 118, 636.
17 O. Abou-Teim, M. C. Goodland and J. F. W. McOmie, J. Chem.
Soc., Perkin Trans. 1, 1983, 2659.
18 S. Takano, K. Inomata, K. Samizu, S. Tomita and M. Yanase,
Chem. Lett., 1989, 1283.
19 M. Krumpolc and J. Rocek, Org. Synth., 1990, Coll. Vol. VII, 114.
20 T. C. L. Wang, T. L. Ricca and A. G. Marshall, Anal. Chem., 1986,
58, 2935.
21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson,
J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G.
Zakrewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov,
A. Nanayakkara, M. Challacombe, C. Y. Peng, R. Y. Ayala, W.
Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts,
R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker,
J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople,
GAUSSIAN94 Revisions A, B, C; Gaussian, Inc., Pittsburgh, PA,
1995.
22 J. A. Pople, A. P. Scott, M. W. Wong and L. Radom, Isr. J. Chem.,
1993, 33, 345.
23 A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88,
899.
MP2/6-31ϩG(d) level of theory, benzocyclobutenone is com-
puted to be 22 kcal molϪ1 more acidic than cyclobutenone and
the corresponding radical also is substantially more stabilized
(i.e., ∆EA(1r Ϫ 8r) = 0.9 eV). The former difference is consider-
ably smaller than that between benzocyclopropene and cyclo-
propene (34.5 kcal molϪ1) at the same level of theory.55 This
represents a leveling effect and is not surprising since cyclobu-
tenone is much more acidic than cyclopropene (∆∆HЊacid = 38.7
kcal molϪ1). As for the relative lack of stability of 8a, this is
due to its inability to distribute the charge on to oxygen via
resonance structures b and c and the resulting distortion to an
allylic-type ion (resonance structure d).
Conclusion
Benzocyclobutenone enolate was generated in the gas phase by
deprotonation of 1. The measured thermochemistry (∆HЊacid
=
360.3 2.1 kcal molϪ1, EA = 1.90 0.10 eV and BDE = 90.5
3.1 kcal molϪ1) suggests that there is little, if any, antiaromatic
destabilization of 1a as a result of a resonance structure with
cyclobutadiene character. In fact, an analysis of the ion’s struc-
ture using NBO and Bader’s parameters reveals that 1a’s over-
all stability is a result of its ability to distort and alleviate the
4π electron interaction, and to distribute the charge over the
benzene ring and the electronegative oxygen atom. Anion 1a
displays carbon reactivity with perfluorinated reagents under
thermal conditions, but can be induced to react through oxygen
upon excitation. Despite previous reported failures, benzo-
cyclobutenone enolate was trapped in situ with an electrophile
in the liquid phase.
24 F. Weinhold and J. E. Carpenter, in The Structure of Small
Molecules and Ions, Plenum, New York, 1988.
25 R. F. W. Bader, in Atoms in Molecules: A Quantum Theory, Oxford
University Press, Oxford, 1990.
26 All thermodynamic data, unless otherwise noted, comes from
S. G. Lias, J. E. Bartmess, J. F. Liebmann, J. L. Holmes, R. D. Levin
and W. G. Mallard, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. 1 [or
the slightly updated form available on a personal computer, NIST
Negative Ion Energetics Database (Version 3.00, 1993); NIST
Standard Reference Database 19B] or ref. 27. Note, 4.184 kJ = 1 kcal
and 1 eV = 23.06 kcal and 96.48 kJ.
27 J. E. Bartmess, Negative Ion Energetics Data in Secondary Negative
Ion Energetic Data, November 1998, National Institute of
Standards and Technology, Gaithersburg, MD 20899 (http://
webbook.nist.gov).
28 J. E. Bartmess and R. M. Georgiadis, Vacuum, 1983, 33, 149.
29 K. J. Miller, J. Am. Chem. Soc., 1990, 112, 8533.
30 The error in kϪ1 is related to the magnitude of the rate and the gauge
reading for the neutral pressure. A minimal pressure of the ketone
Acknowledgements
Support from the National Science Foundation, the donors of
the Petroleum Research Foundation, as administered by the
J. Chem. Soc., Perkin Trans. 2, 1999, 2389–2396
2395