Dinuclear N-heterocyclic carbene palladium complexes
MS (ESI): calcd for C46H63Cl4N6Pd2 [M + H]+ 1055.1913; found
1055.1948. Anal. Calcd for [PdCl2Mes]2(μ-piperazine)
(C46H62Cl4N6Pd2) (%): C, 52.43; H, 5.93; N, 7.98. Found (%): C,
52.62; H, 5.60; N, 8.12.
room temperature, the filtrate was concentrated with a rotary evap-
orator, and the residue was then subjected to purification via flash
column chromatography with petroleum ether–EtOAc as an eluent
to affoed the corresponding pure products.
Complex 3b
Acknowledgements
Yield 95 mg, 78% (Procedure 1); 116 mg, 95% (Procedure 2).
Decomposition temperature > 282°C. 1H NMR (400 MHz, CDCl3,
δ, ppm): 7.38 (t, J = 7.6 Hz, 4H, p-ArH), 7.24 (d, J = 7.6 Hz, 8H, m-
ArH), 3.97 (s, 8H, NCH2CH2N, imidazolidine), 3.39 (sept, J = 6.8
Hz, 8H, CH(CH3)2), 2.57–2.51 (m, 4H, HNCH2CH2NH, piperazine),
2.29–2.14 (m, 4H, HNCH2CH2NH, piperazine), 2.14 (br, 2H,
piperazine-NH), 1.44 (d, J = 6.4 Hz, 24H, CH(CH3)2), 1.20 (d, J =
6.8 Hz, 24H, CH(CH3)2). 13C NMR (100 MHz, CDCl3, δ, ppm):
187.9 (Ccarbene), 147.5 (o-CAr), 135.2 (N-CAr), 129.3 (p-CAr), 124.2
(m-CAr), 53.6 (NCH2CH2N, imidazolidine), 46.9 (HNCH2CH2NH, pi-
perazine), 28.6 (CH(CH3)2), 26.8 (CH(CH3)2), 24.0 (CH(CH3)2). FT-
IR (KBr, cmÀ1): 3179, 2956, 1589, 1455, 1383, 1363, 1327,
1271, 1056, 1010, 933, 885, 802. HR-MS (ESI): calcd for
Financial support from the National Natural Science Foundation of
China (no. 21301061) and the Natural Science Foundation of Anhui
Province (no. 1408085QB36) is gratefully acknowledged.
References
[1] A. J. Arduengo, III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361.
[2] For reviews, see: a) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41,
1440; b) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47,
3122. c) S. Diez-Gonzalez, N. Marion, S. P. Nolan, Chem. Rev. 2009,
109, 3612. d) T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49,
6940. e) G. C. Fortman, S. P. Nolan, Chem. Soc. Rev. 2011, 40, 5151. f)
S. Budagumpi, R. A. Haque, A. W. Salman, Coord. Chem. Rev. 2012,
256, 1787. g) R. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev. 2015, 44,
5040.
C
58H87Cl4N6Pd2 [M + H]+ 1223.3791; found 1223.3817. Anal.
Calcd for [PdCl2IPr]2(μ-piperazine) (C58H86Cl4N6Pd2) (%): C,
57.01; H, 7.09; N, 6.88. Found (%): C, 57.32; H, 7.372; N, 6.64.
[3] a) C. J. O’Brien, E. A. B. Kantchev, N. Hadei, C. Valente, G. A. Chass,
J. C. Nasielski, A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J.
2006, 12, 4743. b) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei,
E. A. B. Kantchev, C. J. O’Brien, C. Valente, Chem. Eur. J. 2006, 12, 4749.
[4] a) M. J. Lappert, J. Org. Chem. 1975, 100, 139. b) T. Weskamp, F. J. Kohl,
W. Hieringer, D. Gleich, W. A. Herrmann, Angew. Chem. Int. Ed. 1999, 38,
2416.
[5] a)T. Tu, W. Fang, J. Jiang, Chem. Commun. 2011, 47, 12358.For selected
examples, see b) A. Chartoire, X. Frogneux, A. Boreux, A. M. Z. Slawin,
S. P. Nolan, Organometallics 2012, 31, 6947. c) M. Teci, E. Brenner,
D. Matt, L. Toupet, Eur. J. Inorg. Chem. 2013, 2841. d) H. Lv, L. Zhu,
Y.-Q. Tang, J.-M. Lu, Appl. Organometal. Chem. 2014, 28, 27. e)
H. Baier, A. Kelling, H.-J. Holdt, Eur. J. Inorg. Chem. 1950, 2015.
[6] J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O’Brien,
A. Lough, M. G. Organ, Chem. Eur. J. 2010, 16, 10844.
Complex 3c
Yield 86 mg, 80% (Procedure 1); 92 mg, 90% (Procedure 2). De-
composition temperature > 256°C. H NMR (400 MHz, CDCl3, δ,
1
ppm): 6.94 (s, 8H, m-ArH), 3.92 (s, 8H, NCH2CH2N,
imidazolidine), 2.62 (s, 12H, NCH2CH2N, DABCO), 2.46 (s, 24H,
o-CH3), 2.30 (s, 12H, p-CH3). 13C NMR (100 MHz, CDCl3, δ,
ppm): 182.6 (Ccarbene), 138.1 (o-CAr), 137.0 (N-CAr), 134.8(p-CAr),
129.2(m-CAr), 50.9 (NCH2CH2N, imidazolidine), 48.5 (NCH2CH2N,
DABCO), 21.0 (p-CH3), 19.3 (o-CH3). FT-IR (KBr, cmÀ1): 3179,
2916, 1606, 1491, 1451, 1378, 1308, 1269, 1183, 1017, 929,
852, 808. HR-MS (ESI): calcd for C48H65Cl4N6Pd2 [M + H]+
1081.2069; found 1081.2075. Anal. Calcd for [PdCl2IMes]2(μ-
DABCO) (C48H64Cl4N6Pd2) (%): C, 53.40; H, 5.97; N, 7.78. Found
(%): C, 53.61; H, 6.26; N, 7.88.
[7] M.-T. Chen, D. A. Vicic, M. L. Turner, O. Navarro, Organometallics 2011,
30, 5052.
[8] M.-T. Chen, D. A. Vicic, W. J. Chain, M. L. Turner, O. Navarro,
Organometallics 2011, 30, 6770.
[9] L. Zhu, T.-T. Gao, L.-X. Shao, Tetrahedron 2011, 67, 5150.
[10] P. Huang, Y.-X. Wang, H.-F. Yu, J.-M. Lu, Organometallics 2014, 33, 1587.
[11] a) Z.-Y. Wang, G.-Q. Chen, L.-X. Shao, J. Org. Chem. 2012, 77, 6608. b)
J. L. Farmer, M. Pompeo, A. J. Lough, M. G. Organ, Chem. Eur. J. 2014,
20, 15790.
[12] M. Micksch, M. Tenne, T. Strassner, Organometallics 2014, 33, 3966.
[13] V. S. Saberov, D. A. Evans, N. I. Korotkikh, A. H. Cowley, T. M. Pekhtereva,
A. F. Popov, O. P. Shvaika, Dalton Trans. 2014, 43, 18117.
[14] T. Wang, H. Xie, L. Liu, W.-X. Zhao, J. Org. Chem. 2016, 804, 73.
[15] F. Liu, Y.-R. Zhu, L.-G. Song, J.-M. Lu, Org. Biomol. Chem. 2016, 14, 2563.
[16] X.-Y. Zhao, Q. Zhou, J.-M. Lu, RSC Adv. 2016, 6, 24484.
[17] a) Y. Han, H. V. Huynh, G. K. Tan, Organometallics 2007, 26, 6447. b)
S. K. Yen, L. L. Koh, H. V. Huynh, T. S. A. Hor, Chem. Asian J. 2008, 3,
1649. c) U. J. Scheele, M. John, S. Dechert, F. Meyer, Eur. J. Inorg.
Chem. 2008, 373. d) L. Liu, F. Wang, M. Shi, Eur. J. Inorg. Chem. 1723,
2009. e) D. Yuan, H. V. Huynh, Organometallics 2010, 29, 6020. f)
M.-T. Ma, J.-M. Lu, Appl. Organometal. Chem. 2012, 26, 175. g) J. Yang,
L. Wang, Dalton Trans. 2012, 41, 12031. h) J. Yang, P. Li, Y. Zhang,
L. Wang, Dalton Trans. 2014, 43, 7166. i) J. Yang, P. Li, Y. Zhang,
L. Wang, J. Org. Chem. 2014, 766, 73. j) T. Guo, S. Dechert, F. Meyer,
Organometallics 2014, 33, 5145. k) S. A. Reindl, A. Pöthig, B. Hofmann,
W. A. Herrmann, F. E. Kühn, J. Org. Chem. 2015, 775, 130.
Complex 3d
Yield 102 mg, 82% (Procedure 1); 112 mg, 90% (Procedure 2).
Decomposition temperature > 282°C. 1H NMR (400 MHz, CDCl3,
δ, ppm): 7.38 (t, J = 7.6 Hz, 4H, p-ArH), 7.24 (d, J = 7.6 Hz, 8H, m-
ArH), 3.99 (s, 8H, NCH2CH2N, imidazolidine), 3.44 (sept, J = 6.8
Hz, 8H, CH(CH3)2), 2.64 (s, 8H, NCH2CH2N, DABCO), 1.44 (d, J =
6.4 Hz, 24H, CH(CH3)2), 1.19 (d, J = 6.8 Hz, 24H, CH(CH3)2). 13C
NMR (100 MHz, CDCl3, δ, ppm): 184.7 (Ccarbene), 147.6 (o-CAr),
135.2 (N-CAr), 129.3 (p-CAr), 124.1 (m-CAr), 53.6 (NCH2CH2N,
imidazolidine), 48.8 (NCH2CH2N, DABCO), 28.6 (CH(CH3)2), 26.7
(CH(CH3)2), 24.0 (CH(CH3)2). FT-IR (KBr, cmÀ1): 3158, 3064,
2964, 2868, 1588, 1479, 1382, 1359, 1323, 1298, 1268, 1178,
1103, 1053, 1013, 931, 806. HR-MS (ESI): calcd for
C
60H89Cl4N6Pd2 [M + H]+ 1249.3947; found 1249.3980. Anal.
Calcd for [PdCl2SIPr]2(μ-DABCO) (C60H88Cl4N6Pd2) (%): C, 57.74;
H, 7.11; N, 6.73. Found (%): C, 57.51; H, 7.42; N, 7.08.
[18] a) Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918. b) S. E. Denmark,
C. S. Regens, Acc. Chem. Res. 2008, 41, 1486. c) Y. Nakao, T. Hiyama,
Chem. Soc. Rev. 2011, 40, 4893. d) H. F. Sore, W. R. J. D. Galloway,
D. R. Spring, Chem. Soc. Rev. 2012, 41, 1845.
[19] a) H. M. Lee, S. P. Nolan, Org. Lett. 2000, 2, 2053. b) C. Dash,
M. M. Shaikh, P. Ghosh, Eur. J. Inorg. Chem. 1608, 2009. c) X. Zhang,
Q. Xia, W. Chen, Dalton Trans. 2009, 7045. d) I. Peñafiel, I. M. Pastor,
M. Yus, M. A. Esteruelas, M. Oliván, E. Oñate, Eur. J. Org. Chem. 2011,
General Procedure for Hiyama Coupling Reaction
A sealable reaction tube equipped with a magnetic stir bar was
charged with aryl chloride (0.50 mmol), phenyltrialkyoxysilane
(0.60 mmol), n-Bu4NF (1.0 mmol), NHC–Pd complex (0.00125 mmol,
0.25 mmol%) and anhydrous toluene (2.0 ml). The mixture was
stirred at 110°C for 8 h. After the reaction mixture was cooled to
Appl. Organometal. Chem. (2016)
Copyright © 2016 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc