1-Acyl-4-benzylpyridinium Tetrafluoroborates: Stability, Structural Properties
FULL PAPER
Then CH
2
Cl
2
was evaporated off and the residue was dissolved in
O. The insoluble components were filtered off, the
tallized upon cooling to Ϫ40°C. The solid was filtered off, washed
with 20 mL of dry Et O, and dried in vacuo giving 11.0 g of 6
30 mL of Et
2
2
1
solvent was removed with a rotatory evaporator and the crude (92%), colorless solid. Ϫ H NMR (CDCl
product was distilled.
3
, 400 MHz): δ ϭ 4.15
), 7.09Ϫ7.40 (m, 5 H, benzylic H), 7.51 (d, J ϭ 6.3
Hz, 2 H, Py H-3, H-5), 8.53 (d, J ϭ 6.3 Hz, 2 H, Py H-2,H-6). Ϫ
(s, 2 H, CH
2
From theses residues (both methods), benzylpyridine (12) was reco-
vered in 85Ϫ90% yield after distillation of the acyl fluorides: As
exemplified for the synthesis of 5c,e,f, the residue was dissolved in
1
3
3 2
C NMR (CDCl , 100.6 MHz): δ ϭ 41.11 (s, CH ), 126.19 (s, Py
C-3, C-5), 127.22, 129.14, 129.40, 136.45 (s, benzylic C), 142.85 (s,
1
9
Py C-2, C-6), 163.54 (s, Py C-4). Ϫ F NMR (CDCl
δ ϭ Ϫ152.0 (q, J ϭ 11.3 Hz, N-BF
). Ϫ 11B NMR (CDCl
MHz): δ ϭ 3.57 (q, J ϭ 10.9 Hz, N-BF ).
3
, 188.3 MHz):
2
00 mL of half conc. HCl and then washed with 2 ϫ 100 mL of
Et O . The aqueous solution was made alkaline with conc. NaOH
solution and extracted with 3 ϫ 100 mL of CH Cl . The organic
layer was dried (Na SO ), then the solvent was evaporated and fi-
nally the crude product was purified by distillation.
3
3
, 128.4
2
3
2
2
2
4
Cinnamoyl Fluoride (5b): Method A: from pyridinium salt 4b (11.2 Acknowledgments
g, 24.3 mmol), yield: 3.1 g (85%), m.p. ϭ 31.5°C. Ϫ Method B:
Financial support by the Deutsche Forschungsgemeinschaft, the
Fonds der Chemischen Industrie and by the Thüringer Ministerium
für Wissenschaft, Forschung und Kultur (Erfurt, Germany) is
gratefully acknowledged. We thank the HewlettϪPackard Com-
pany for providing us with CPU time. We thank Dr. M. Kunert
from dihydropyridine 1b (10.2 g, 34.1 mmol) and 4.6 mL of HBF
4
1
(
2b) in CH
2 2
Cl (150 mL), heating: 4.0 h, yield: 2.3 g (45%). Ϫ H
[50]
3
3
NMR (CDCl
3
, 400 MHz) : δ ϭ 6.36 (dd, JHF ϭ 7.4 Hz, JHH
ϭ
1
6.0 Hz, 1 H, CHϭCHCOF,); 7.39Ϫ7.50 (m, 3 H, Ph H-p-,H-
3
m,mЈ); 7.54Ϫ7.62 (m, 2 H, Ph H-o, oЈ); 7.82 (d, JHH ϭ 16.0 Hz, 2
H, CHϭCHCOF,). Ϫ C NMR (CDCl
and A. Jansen of the Max Planck Gesellschaft, Forschungsgruppe
13
3
, 100.6 MHz): δ ϭ 111.71
19
2
CO -Chemie, Jena for the performance of F-NMR measure-
2
(d, JCF ϭ 67.1 Hz, CHϭCHCOF), 128.26 (Ph C-o,oЈ), 128.90 (Ph
ments. We thank Dr. Jennie Weston (Jena) for useful discussions.
4
C-m,mЈ); 131.12 (Ph C-p), 132.84 (d, JCF ϭ 0.8 Hz, C-i), 151.22
3
1
(d, JCF ϭ 6.14 Hz, CHϭCHCOF), 156.94 (d, JCF ϭ 338.2 Hz,
[
1] [1a]
A. G. Pittman, D. L. Sharp, J. Org. Chem. 1966, 31,
COF).
1b]
316Ϫ2318. Ϫ [ 18-crown-6 complex: C. L. Liotta, H. P.
2
Lauroyl Fluoride (5c): Method A: from pyridinium salt 4c (8.5 g,
Harris, J. Am. Chem. Soc. 1974, 96, 2250Ϫ2252.
[2]
G. A. Olah, S. Kuhn, S. Beke, Chem. Ber. 1956, 89, 862Ϫ864.
F. Seel, J. Langer, Chem. Ber. 1958, 91, 2553Ϫ2557.
W. R. Hasek, W. C. Smith,V. A. Engelhardt, J. Am. Chem. Soc.
19.35 mmol), yield: 3.0 g (77%). Ϫ Method B: from dihydropyri-
[3]
dine 1c (10.8 g, 30.7 mmol) and 4.2 mL of HBF (2b) in 100 mL
4
[4]
1
of CH
2
Cl
2
, heating: 4.0 h, yield: 3.4 g (54.8%). Ϫ H NMR (CDCl
3
,
1
960, 82, 543Ϫ551.
[5]
4
1
00 MHz): δ ϭ 0.86 (t, 3 H, CH
3
), 1.15Ϫ1.40 (m, 16 H, (CH
2
)
8
),
G. A. Olah, S. J. Kuhn,. Org. Synth. 1965, 45, 3Ϫ7.
L. N. Markovski, V. E. Pashinnik, Synthesis 1975, 801Ϫ802.
T. Mukaiyama, T. Tanaka, Chem. Lett. 1976, 303Ϫ306, and
references cited therein.
[6]
3
3
2
.65 (m, 2 H, β-CH ), 2.47 (dt, JHH ϭ 7.4 Hz, JHF ϭ 1.1 Hz, 2
[7]
). Ϫ 1 C NMR (CDCl
3
H, α-CH
2
3
, 100.6 MHz): δ ϭ 14.00 (s, CH
3
),
3
22.59, 23.84 (d, JCF ϭ 1.7 Hz, β-CH
2
,), 28.61 (s, δ-CH ), 28.98 (s,
2
[8] [8a]
T. Sakakura, M. Chaisupakitsin, T Hayashi, M Tanaka, J.
2
[8b]
γ-CH
α-CH
2
), 29.22, 29.25, 29.44, 29.48, 31.80, 32.04 (d, JCF ϭ 32.0 Hz,
Organomet. Chem. 1987, 334, 205Ϫ211. Ϫ
T. Okano, N.
,), 163.55 (d, JCF ϭ 360.7 Hz, COF). Ϫ 19F NMR (CDCl
1
Harada, J. Kiji, Bull. Chem. Soc. Jpn. 1992, 65, 1741Ϫ1743.
G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerekes,
J. A. Olah, J. Org. Chem. 1979, 44, 3872Ϫ3881.
2
3
,
[
9]
88.3 MHz)[51]: δ ϭ 44.9.
1
[10]
G. A. Olah, M. Nojima, I. Kerekes, Synthesis 1973, 487Ϫ488.
Acetyl Fluoride (5d): Method A: from pyridinium salt 4d (9.0 g,
[11]
1
For further fluorinating reagents for halogen exchange and re-
3
0.0 mmol), yield: 1.2 g (64%). Ϫ H NMR (CDCl
3
, 400 MHz):
, 100.6 MHz): δ ϭ
3
), 160.8 (d, JCF ϭ 354.4 Hz, COF).
[11a]
lated reactions cf.:
ZnF : K. D. Goggin, J. F. Lambert, S.
2
3
13
δ ϭ 2.23 ( JHF ϭ 7.1 Hz). Ϫ C NMR (CDCl
3
[11b]
W. Walinsky, Synlett 1994, 162Ϫ164. Ϫ
AgClO
4 4
/TiF : J.
2
1
1
8.7 (d, JCF ϭ 58.3 Hz, CH
Jünnemann, I. Lundt, J. Thiem, Liebigs Ann. Chem. 1991,
59Ϫ764. Ϫ [
Chim. Acta 1985, 68, 283Ϫ287. Ϫ
Penglis, Adv. Carbohydr. Chem. Biochem. 1981, 38, 195Ϫ285. Ϫ
11c]
BF -activation: H. Kunz, W. Sager, Helv.
7
3
Benzoyl Fluoride (5e): Method A: from pyridinium salt 4e (5.9 g,
[11d]
AgF: Review: A. A. E.
3
ZnBr · MeCN: W. Tyrra, D. Naumann, S. V. Pasenok,
1
1
6.3 mmol), yield: 1.5 g (74%). Ϫ Method B: from dihydropyridine
e (9.2 g, 33.7 mmol) and 4.6 mL of HBF (2b) in CH Cl (150
]DMSO,
00 MHz): δ ϭ 7.61 (m, 2 H, H-m,mЈ), 7.81 (m, 1 H, H-p), 8.00
[11e]
CF
Y. L. Yaguploskii, J. Fluorine Chem. 1995, 70, 181Ϫ186. Ϫ
4
2
2
[11f]
1
mL), heating: 3.5 h; yield: 2.0 g (48%). Ϫ H NMR ([D
4
6
W. Tyrra, D. Naumann, J. Prakt. Chem. 1996, 338, 283Ϫ286;
R. Miethchen, C. Hager, M. Hein, Synthesis 1997, 159Ϫ164.
J. A. Hyatt, P. W. Raynolds, J. Org. Chem. 1984, 49, 384Ϫ385.
FMOC : [(9-Fluorenylmethyl)oxy]carbonyl.
13
[12]
13]
6
(m, 2 H, H-o,oЈ). Ϫ C NMR ([D ]DMSO, 100.6 MHz): δ ϭ 124.9
[
2
4
(d,
J
CF ϭ 60.5 Hz, C-1), 129.0 (d,
J
CF ϭ 1.13 Hz, C-3, C-5),
[14] [14a]
3
1
L. A. Carpino, D. Sadat-Aalaee, H. G. Chao, R. H. De-
1
3
31.4 (d, JCF ϭ 4.1 Hz, C-2, C-6), 135.3 (s, C-4), 157.34 (d, JCF
44.3 Hz, COF). Ϫ 19F NMR (CDCl
ϭ
[14b]
Selms, J. Am. Chem. Soc. 1990, 112, 9651Ϫ9652. Ϫ
J.-N.
H. Wenschuh, M Beyer-
3
, 188.3 MHz): δ ϭ 17.52.
Bertho, A. Loffet, C. Pinel, F. Reuther, G. Sennyey, Tetrahedron
Lett. 1991, 32( 10) , 1303Ϫ1306. Ϫ [
14c]
Anisoyl Fluoride (5f): Method B: from dihydropyridine 1f (9.85 g,
mann, E. Krause, M.Brudel, R. Winter, M. Schümann, L. A.
Carpino, M. Bienert, J. Org. Chem. 1994, 59, 3275Ϫ3280.
S. Shoda, T. Mukaiyama, Chem. Lett. 1982, 861Ϫ862. Ϫ cf:
3
2.5 mmol) and 4.4 mL of HBF
.0 h, yield 4.2 g (84%). Ϫ H NMR (CDCl
4
(2b) in CH
2
Cl
2
(90 mL), heating
1
[15]
4
3
, 400 MHz): δ ϭ 3.86
[11]
3 3
s, 3 H, OCH ,
), 6.96 (m, 2 H), 7.94 (m, 2 H). Ϫ 1 C NMR (CDCl
3
ref.
16] [16a]
(
1
3
[
00.6 MHz)[52]: δ ϭ 56.59 (s, OCH
4
R. Wagner, W. Günther, E. Anders, Synthesis 1998,
[16b]
3
), 115.37 (d, JCF ϭ 1.3 Hz, C-
8
83Ϫ888. Ϫ
E. Anders, W. Will, A. Stankowiak, Chem.
[16c]
2
3
, C-5), 117.12 (d, JCF ϭ 61.8 Hz, C-1), 134.69 (d, JCF ϭ 4.2 Hz,
Ber. 1983, 116, 3192Ϫ3204. Ϫ
E. Anders, Synthesis 1978,
E. Anders, W. Will, Synthesis 1982, 390Ϫ392.
1
[16d]
C-2, C-6), 158.23 (d, JCF ϭ 339.7 Hz, COF); 166.18 (s, C-4). Ϫ
586Ϫ588. Ϫ
[17]
19
The instability of similar compounds and their analogous de-
composition has been described in the literature: cf. C. Lohse,
S. Hollenstein, T. Laube, Angew. Chem. 1991, 103, 1678Ϫ1679;
Angew. Chem. Int. Ed. Engl. 1991, 30, 1656Ϫ1658 and refer-
ences cited therein.
I. B. Gorrell, G. Parkin, Inorg. Chem. 1990, 29, 2452Ϫ2456.
C. H. Winter, X.-X. Zhou, M. J. Heeg, Inorg. Chem. 1992, 31,
1808Ϫ1825.
3
F NMR (CDCl , 188.3 MHz): δ ϭ 15.40.
Preparation of Borontrifluoride Pyridine Complex 6 as a Reference
Compound: A solution of 8.5 g (50.2 mmol) of 4-benzylpyridine
(
(
12) in 100 mL of Et
2
O was cooled with an ice bath. Then 13.6 mL
(48% in Et O) was added and the mix-
[18]
[19]
50.2 mmol) of BF ϫ OEt
3
2
2
ture was stirred for 1 h. A yellowish oil precipitated which crys-
Eur. J. Org. Chem. 1999, 2383Ϫ2390
2389