10.1002/anie.202006992
Angewandte Chemie International Edition
RESEARCH ARTICLE
K. Biswas, S. M. Lim, M-H. Baik, J. Min Joo, Angew. Chem. 2017, 129,
16480-16484; Angew. Chem. Int. Ed. 2017, 56, 16262-16266; f) X.
Zhao, C. Song, J. D. Rainier, J. Org. Chem. 2020, 85, 5449-5463.
205; d) D. J. Tantillo; R. Hoffman, J. Am. Chem. Soc. 2001, 123, 9855-
9859; e) D. J. Tantillo; R. Hoffman, Helv. Chim. Acta 2001, 84, 1396-
1404; f) C. A. Sader, K. N. Houk, J. Org. Chem. 2012, 77, 4939-4948.
[14] a) E. J. Reardon, Jr., M. Brookhart, J. Am. Chem. Soc. 1973, 95, 4311-
4316; b) M. Brookhart, N. M. Lippman, E. J. Reardon, Jr., J. Organomet.
Chem. 1973, 54, 247-253; c) See also: P. W. N. M. Van Leeuwen, H. C.
Volger, M. Appelman, C. J. Gaasbeek, J. Organomet. Chem. 1971, 33,
C49-C50.
[8]
For leading references: a) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J.
Uenishi, J. Am. Chem. Soc. 1982, 104, 5555-5557; b) C. M. Beaudry, D.
Trauner, Org. Lett. 2002, 4, 2221-2224; c) L. M. Stark, K. Pekari, E. J.
Sorensen, Proc. Natl. Acad. Sci. USA 2004, 101, 12064-12066; d) C. M.
Beaudry, D. Trauner, Org. Lett. 2005, 7, 4475-4477; e) A. K. Miller, D.
Trauner, Angew. Chem. 2005, 117, 4678-4682; Angew Chem. Int. Ed.
2005, 44, 4602-4606; f) M. Müller, B. Kusebauch, G. Liang, C. M.
Beaudry, D. Trauner, C. Hertweck, Angew. Chem. 2006, 118, 7999-
8002; Angew. Chem. Int. Ed. 2006, 45, 7835-7838; g) G. A. Barcan, A.
Patel, K. N. Houk, O. Kwon, Org. Lett. 2012, 14, 5388-5391; h) M. Bian,
Z. Wang, X. Xiong, Y. Sun, C. Matera, K. C. Nicolaou, A. Li, J. Am.
Chem. Soc. 2012, 134, 8078-8081; i) H. N. Lim, K. A. Parker, Org. Lett.
2013, 15, 398-401; j) J. Li, P. Yang, M. Yao, J. Deng, A. Li, J. Am.
Chem. Soc. 2014, 136, 16477-16480; k) M. Yang, X. Yang, H. Sun, A.
Li, Angew. Chem. 2016, 128, 2901-2905; Angew. Chem. Int. Ed. 2016,
55, 2851-2855; l) P. Yang, M. Yao, J. Li, Y. Li, A. Li, Angew Chem.
2016, 128, 7078-7082; Angew Chem. Int. Ed. 2016, 55, 6964-6968; m)
Z. Zhang, Y. Li, D. Zhao, Y. He, J. Gong, Z. Yang, Chem. Eur. J. 2017,
23, 1258-1262; n) V. Palani, C. L. Hugelshofer, R. Sarpong, J. Am.
Chem. Soc. 2019, 141, 14421-14432.
[15] a) J. A. King Jr., K. P. C. Vollhardt, J. Organomet. Chem. 1989, 369,
245-251. (b) J. A. King Jr., K. P. C. Vollhardt, J. Organomet. Chem.
1994, 470, 207-222.
[16] R. H. Crabtree, The Organometallic Chemistry of the Transition Metals,
7th Ed. (Wiley, 2019).
[17] For representative metal complexes of conjugated trienes, see: a) P.
McArdle, H. Sherlock, J. C. S. Dalton 1978, 1678-1682; b) P. Powell, J.
Organomet. Chem. 1984, 266, 307-311; c) Y. Takemoto, K. Ishii, T.
Ibuka, Y. Miwa, T. Taga, S. Nakao, T. Tanaka, H. Ohishi, Y. Kai, N.
Kanehisa, J. Org. Chem. 2001, 66, 6116-6123; d) H. Fukumoto, K.
Mashima, Eur. J. Inorg. Chem. 2006, 5006-5011; e) A.
Sivaramakrishna, E. Hager, F. Zheng, H. Su, G. S. Smith, J. R. Moss, J.
Organomet. Chem. 2007, 692, 5125-5132; f) M. Hirano, ACS Catal.
2019, 9, 1408-1430; g) refs. 14 and 15.
[18] J. Xavier, M. Thiel, E. R. Lippincott, J. Am. Chem. Soc. 1961, 83, 2403-
3403.
[9]
a) E. N. Marvell, G. Caple, B. Schatz, Tetrahedron Lett. 1965, 7, 385-
389; b) H. Heimgartner, H.-J. Hansen, H. Schmid, Helv. Chim. Acta
1970, 53, 173-176; c) C. J. Gaasbeek, H. Hogeveen, H. C. Volger,
Recueil, 1972, 91, 821-830; d) E. N. Marvell, G. Caple, B. Schatz, J. W.
Pippin, Tetrahedron 1973, 29, 3781-3789; e) E. N. Marvell, G. Caple, C.
Delphey, J. Platt, N. Polston, J. Tashiro, B. Schatz, Tetrahedron 1973,
29, 3797-3806; f) E. N. Marvell, J. Seubert, G. Vogt, G. Zimmer, G. Moy,
J. R. Siegmann, Tetrahedron 1978, 34, 1323-1332; g) C. W. Spangler,
B. Keys, D. C. Bookbinder, J. C. S. Perkin II, 1979, 810-813; h) E. N.
Marvell, C. Hilton, M. Cleary, J. Org. Chem. 1983, 48, 4272-4275; i) J.
E. Baldwin, V. P. Reddy, J. Org. Chem. 1988, 53, 1129-1132; j) A. K.
Miller, M. R. Banghart, C. M. Beuadry, J. M. Suh, D. Trauner,
Tetrahedron, 2003, 59, 8919-8930; k) S. Brückner, J. E. Baldwin, R. M.
Adlington, T. D. W. Claridge, B. Odell, Tetrahedron 2004, 60, 2785-
2788; l) Z. R. Akerling, J. E. Norton, K. N. Houk, Org. Lett. 2004, 6,
4273-4275; m) R. von Essen, D. Frank, H. W. Sünnemann, D. Vidović,
J. Magull, A. de Meijere, Chem. Eur. J. 2005, 11, 6583-6592; n) T-Q.
Yu, Y. Fu, L. Liu, Q-X. Guo, J. Org. Chem. 2006, 71, 6157-6164; o) H.
W. Sünnemann, M. G. Banwell, A. de Meijere, Eur. J. Org. Chem. 2007,
3879-3893; p) Tius, M. A. in Stereoselective Synthesis of Drugs and
Natural Products: Andrushko, V; Andrushko, N. Eds. John Wiley& Sons,
Inc. (2013).
[19] a) H. Jiao, P. v. R. Schleyer, J. Am. Chem. Soc. 1995, 117, 11529-
11535; b) P. v. R. Schleyer, J. I. Wu, F. C. Cossio, I. Fernández, Chem.
Soc. Rev. 2014, 43, 4909-4921; c) See also: R. U. Nisa, M. A. Hashmi,
S. Sajjad, T. Mahmood, J. Iqbal, K. Ayub, J. Organomet. Chem. 2016,
808, 78-86.
[20] a) J. M. O’Connor, L. I. Lee, P. Gantzel, A. L. Rheingold, K-C. Lam, J.
Am. Chem. Soc. 2000, 122, 12057-12058; b) J. M. O'Connor, S. J.
Friese, B. L. Rodgers, J. Am. Chem. Soc. 2005, 127, 16342-43; c) J. M.
O’Connor, S. J. Friese, Organometallics 2008, 27, 4280-4281.
[21] a) J. M. O’Connor, S. J. Friese, M. Tichenor, J. Am. Chem. Soc. 2002,
124, 3506-3507; b) D. M. Hitt, R. L. Holland, K. K. Baldridge, S. K.
Cope, J. M.; O’Connor, Organometallics, 2017, 36, 4256-4267; c) P.
Qin, S. K. Cope, H. Steger, K. M. Veccharelli, R. L. Holland, D. M. Hitt,
C. E. Moore, K. K. Baldridge, J. M. O’Connor, Organometallics 2017,
36, 3967-3973; d) J. M. O'Connor, S. J. Friese, B. L. Rodgers, A. L.
Rheingold, L. Zakharov, J. Am. Chem. Soc. 2005, 127, 9346-9347.
[22] a) R. Carreno, B. Chaudret, D. Labroue, S. Sabo-Etienne,
Organometallics 1993, 12, 13-14; b) R. Carreno, F. Urbanos, F. Dahan,
B. Chaudret, New. J. Chem. 1994, 18, 449-455.
[23] K. Masuda, H. Ohkita, S. Kurumatani, K. Itoh, J. Organomet. Chem.
1993, 454, C13-C16.
[10] a) L. M. Bishop, J. E. Barbarow, R. G. Bergman, D. Trauner, Angew.
Chem. 2008, 120, 8220-8223; Angew. Chem. Int. Ed. 2008, 47, 8100-
8103; b) L. M. Bishop, R. E. Roberton, R. G. Bergman, D. Trauner,
Synthesis 2010, 13, 2233-2244.
[24] B. Chaudret, F. Dahan, X. D. He, J. Chem. Soc., Chem. Commun.
1990, 1111-1113.
[25] To our knowledge the only example of metal coordination to the C1/C5
alkenes of
a
conjugated triene is the meso complex [(h5-
[11] a) R. Hayashi, M. C. Walton, R. P. Hsung, J. H. Schwab, X. Yu, Org.
Lett. 2010, 12, 5768-5771; b) T. Abe, T. Ikeda, R. Yanada, M. Ishikura,
Org. Lett. 2011, 13, 3356-3359; c) M. Bian, Z. Wang, X. Xiong, Y. Sun,
C. Matera, K. C. Nicolaou, A. Li, J. Am. Chem. Soc. 2012, 134, 8078-
8081; d) T. Itoh, T. Abe, T. Choshi, T. Nishiyama, R. Yanada, M.
Ishikura, Eur. J. Org. Chem. 2016, 2290-2299; e) C. E. Sleet, U. K.
Tambar, P. Maity, Tetrahedron 2017, 73, 4023-4038; f) Y. Zou, A. B.
Smith, III, J. Antibiot. 2018, 71, 185-204.
C5Me4H)Ir{h2(C1,C2)-h2(C5,C6)-hexatriene)], which was not observed
to undergo triene cyclization, see ref 17e.
[26] There are dramatic structural differences between h6-triene 12 and h6-
complexes of cyclic trienes, see: S. P. Nolan, K. L. Martin, D. Buzatu, M.
L. Trundell, E. D. Stevens, P. J. Fagan, Structural Chem. 1993, 4, 367-
375.
[27] M. L. H. Green, D. K. P. Ng, Chem. Rev. 1995, 95, 439-473.
[28] C. Aubert, V. Gandon, S. Han, B. M. Johnson, M. Malacria, S.
Schömenauer, K. P. C. Vollhardt, G. D. Whitener, Synthesis 2010,
2179-2200.
[12] D. J. Tantillo, Angew. Chem. 2009, 121, 33-34; Angew. Chem. Int. Ed.
2009, 48, 31-32.
[13] The 6p electrocyclization of trienes to cyclohexadienes is thermally
allowed. For this reason, there is no need to invoke orbital constraints
as in the orbital-symmetry-forbidden 4p electrocyclization of
cyclobutene to butadiene. In the latter case, early work on metal –
promoted 4p electrocyclizations led to the suggestion that electron
donation from the metal into the p* orbital of the ligand facilitated the
thermally-forbidden ring opening: a) M. J. S. Dewar, Angew. Chem.
1971, 83, 859-875; Angew. Chem. Int. Ed. 1971, 10, 761-776; b) F. D.
Mango in “Topics in Current Chemistry”, Vol. 45, Springer-Verlag,
Berlin, 1974, 65-71; c) F. D. Mango, Coord. Chem. Rev. 1975, 15, 109-
[29] M. Brookhart, M. L. H. Green, G. Parkin, Proc. Nat. Acad. Sci. 2007,
104, 6909-6914.
[30] Quaternary carbons in 6-membered rings are a common structural
feature in natural products, see: K. W. Quasdorf, L. E. Overman, Nature
2014, 516, 181-191.
[31] a) B. Chaudret, Bull. Soc. Chim. Fr. 1995, 132, 268-279; b) C. M. Older,
J. M. Stryker J. Am. Chem. Soc. 2000, 122, 2748-2797.
[32] For a discussion of torquoselectivity in the ring closure of postulated
chromium
– – carbene
h6-dienylketene intermediates in chromium
7
This article is protected by copyright. All rights reserved.