UDP-4-keto-pentose/UDP-xylose Synthase in R. solanacearum
10. Knirel, Y. A., Paramonov, N. A., Vinogradov, E. V., Shashkov, A. S., Dmi-
A fundamental question regarding the evolution of eukary-
otic Uxs and Uaxs enzymes is when their functions di-
genetic analysis, the UXS clade includes eukaryote (animal,
fungus, and plant) Uxs and bacterial Uxs homologs (clade A),
triev, B. A., Kochetkov, N. K., Kholodkova, E. V., and Stanislavsky, E. S.
(1987) Eur. J. Biochem. 167, 549–561
11. Ma, L., Lu, H., Sprinkle, A., Parsek, M. R., and Wozniak, D. J. (2007) J.
Bacteriol. 189, 8353–8356
12. Xu, X., Ruan, D., Jin, Y., Shashkov, A. S., Senchenkova, S. N., Kilcoyne, M.,
Savage, A. V., and Zhang, L. (2004) Carbohydr. Res. 339, 1631–1636
whereas the UAXS clade has only plant members. The plant 13. Forsberg, L. S., and Carlson, R. W. (2008) J. Biol. Chem. 283, 16037–16050
14. Hwang, H. Y., and Horvitz, H. R. (2002) Proc. Natl. Acad. Sci. U.S.A. 99,
14218–14223
UAXS is more closely related to the bacterial ArnA and
Rs4Ukpxs, than it is to the plant UXS as shown in Fig. 2A. These
results imply that plant UAXS did not evolve from a plant UXS,
although they both use the same substrates and formed the
same intermediates. Several eubacteria, including cyanobacte-
ria, have UXS homologs with more sequence identity to the
plant UXS (E-value 1e-129) than to the plant UAXS, bacterial
ArnA homologs, and Clade B U4kpxs proteins. These analyses
suggest that an ancestral UXS/UAXS arose in early prokaryotes
(see model 1) and then separated into two enzymes (early bac-
terial UXS and UAXS) with distinct functions. The early bacte-
rial UXS gave rise to the current UXS homologs found in bac-
teria, animals, fungi, and plants; the early bacterial UAXS then
gave rise to the current plant Uaxs, bacterial ArnA homologs,
and clade B proteins. During evolution, the plant UAXS further
acquired a different function than RsU4kpxs, generating both
UDP-apiose and UDP-xylose via the same UDP-4-keto-pen-
tose intermediate. When the early plants acquired both the
UAXS and UXS gene from ancestral bacteria remains
uncertain.
15. Mølhøj, M., Verma, R., and Reiter, W. D. (2003) Plant J. 35, 693–703
16. Guyett, P., Glushka, J., Gu, X., and Bar-Peled, M. (2009) Carbohydr. Res.
344, 1072–1078
17. Gu, X., Wages, C. J., Davis, K. E., Guyett, P. J., and Bar-Peled, M. (2009)
J. Biochem. 146, 527–534
18. Harper, A. D., and Bar-Peled, M. (2002) Plant Physiol. 130, 2188–2198
19. Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R. (2002) J. Biol. Chem. 277,
2886–2896
20. Altschul, S. F., Madden, T. L., Scha¨ffer, A. A., Zhang, J., Zhang, Z., Miller,
W., and Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402
21. Katoh, K., Kuma, K., Toh, H., and Miyata, T. (2005) Nucleic Acids Res. 33,
511–518
22. Guindon, S., and Gascuel, O. (2003) Syst. Biol. 52, 696–704
23. Gu, X., and Bar-Peled, M. (2004) Plant Physiol. 136, 4256–4264
24. Mohnen, D., Bar-Peled, M., and Somerville, C. R. (2008) in Biosynthesis of
Plant Cell Walls (Himmel, M., ed) pp. 1–54, Blackwell Publishing, Oxford
25. Rao, S. T., and Rossmann, M. G. (1973) J. Mol. Biol. 76, 241–256
26. Weirenga, R. K., Terpstra, P., and Hol, W. G. (1986) J. Mol. Biol. 187,
101–107
27. Tello, M., Rejzek, M., Wilkinson, B., Lawson, D. M., and Field, R. A. (2008)
Chembiochem. 9, 1295–1302
28. Melanc¸on, C. E., 3rd, Hong, L., White, J. A., Liu, Y. N., and Liu, H. W.
(2007) Biochemistry 46, 577–590
Acknowledgments—We thank Dr. Russell Malmberg and Malcolm
O’Neil for constructive comments on the manuscript.
29. Williams, G. J., Breazeale, S. D., Raetz, C. R., and Naismith, J. H. (2005)
J. Biol. Chem. 280, 23000–23008
30. Gatzeva-Topalova, P. Z., May, A. P., and Sousa, M. C. (2004) Biochemistry
43, 13370–13379
REFERENCES
31. Pauly, M., Porchia, A., Olsen, C. E., Nunan, K. J., and Scheller, H. V. (2000)
Anal. Biochem. 278, 69–73
1. Go¨tting, C., Kuhn, J., Zahn, R., Brinkmann, T., and Kleesiek, K. (2000) J.
Mol. Biol. 304, 517–528
32. Veshtort, M., and Griffin, R. G. (2006) J. Magn. Reson. 178, 248–282
33. Zdorovenko, E. L., Vinogradov, E., Wydra, K., Lindner, B., and Knirel, Y. A.
(2008) Biomacromolecules 9, 2215–2220
2. Kuhn, J., Go¨tting, C., Schno¨lzer, M., Kempf, T., Brinkmann, T., and
Kleesiek, K. (2001) J. Biol. Chem. 276, 4940–4947
3. Bakker, H., Oka, T., Ashikov, A., Yadav, A., Berger, M., Rana, N. A., Bai, X.,
Jigami, Y., Haltiwanger, R. S., Esko, J. D., and Gerardy-Schahn, R. (2009)
J. Biol. Chem. 284, 2576–2583
34. Kocharova, N. A., Knirel, Y. A., Shashkov, A. S., Nifant’ev, N. E., Kochet-
kov, N. K., Varbanets, L. D., Moskalenko, N. V., Brovarskaya, O. S., Muras,
V. A., and Young, J. M. (1993) Carbohydr. Res. 250, 275–287
35. Varbanets, L. D., Vasil’ev, V. N., and Brovarskaia, O. S. (2003) Mikrobiolo-
giia 72, 19–25
4. Cherniak, R., and Sundstrom, J. B. (1994) Infect. Immun. 62, 1507–1512
5. Vaishnav, V. V., Bacon, B. E., O’Neill, M., and Cherniak, R. (1998) Carbo-
hydr. Res. 306, 315–330
36. Gunn, J. S., Lim, K. B., Krueger, J., Kim, K., Guo, L., Hackett, M., and Miller,
S. I. (1998) Mol. Microbiol. 27, 1171–1182
6. Klutts, J. S., and Doering, T. L. (2008) J. Biol. Chem. 283, 14327–14334
7. O’Neill, M., and York, W. S. (2003) in The Plant Cell Wall: Annual Plant
Review (Rose, J. K. C., ed) pp. 1–54, Blackwell Publishing and CRC Press,
Oxford
37. Raetz, C. R., and Whitfield, C. (2002) Annu. Rev. Biochem. 71, 635–700
38. Breazeale, S. D., Ribeiro, A. A., and Raetz, C. R. (2003) J. Biol. Chem. 278,
24731–24739
8. Mohnen, D. (2008) Curr. Opin. Plant Biol. 11, 266–277
9. Shashkov, A. S., Arbatsky, N. P., Cedzynski, M., Kaca, W., and Knirel, Y. A.
(1999) Carbohydr. Res. 319, 199–203
39. Breazeale, S. D., Ribeiro, A. A., McClerren, A. L., and Raetz, C. R. (2005)
J. Biol. Chem. 280, 14154–14167
9040 JOURNAL OF BIOLOGICAL CHEMISTRY
VOLUME 285•NUMBER 12•MARCH 19, 2010