N. Santschi, J. Cvengrosˇ, C. Matthey, E. Otth, A. Togni
SHORT COMMUNICATION
heteroatom is expected to become more favorable.[25] Fi-
nally, in agreement with Kasha’s rule,[26] if the excitation
wavelength was set to 387 nm, the main emission was still
centered around 524 nm, which corresponds to a pseudo-
Stokes shift of ΔS = 137 nm. In light of recent endeavors
to access dyes with large Stokes shifts for applications as
molecular imaging probes, the findings delineated above are
topical and are currently of high interest. Studies directed
towards further conjugation of product 9 by means of
cross-coupling methodology are ongoing and will be re-
ported in due time.
Supporting Information (see footnote on the first page of this arti-
cle): Synthesis of compound 2, copies of the NMR spectra and
quantum yield determination for compound 9.
Acknowledgments
The ETH Zürich is acknowledged for financial support. R. Zscho-
che and P. Gaweł are acknowledged for assistance with fluorescence
measurements and quantum yield determinations, respectively.
[1] A. Treibs, F.-H. Kreuzer, Justus Liebigs Ann. Chem. 1968, 718,
208–223.
[2] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed.
2008, 47, 1184–1201; Angew. Chem. 2008, 120, 1202–1219.
[3] A. P. Demchenko, Advanced Fluorescence Reporters in Chemis-
try and Biology I, Springer, Berlin, 2010, vol. 8.
[4] a) T. W. Hudnall, F. P. Gabbai, Chem. Commun. 2008, 4596–
4597; b) M. R. Rao, S. M. Mobin, M. Ravikanth, Tetrahedron
2010, 66, 1728–1734; c) A. Kamkaew, S. H. Lim, H. B. Lee,
L. V. Kiew, L. Y. Chung, K. Burgess, Chem. Soc. Rev. 2013, 42,
77–88; d) M. J. Ortiz, A. R. Agarrabeitia, G. Duran-Sampedro,
J. Bañuelos Prieto, T. A. Lopez, W. A. Massad, H. A. Monte-
jano, N. A. García, I. Lopez Arbeloa, Tetrahedron 2012, 68,
1153–1162.
[5] J. A. Hendricks, E. J. Keliher, D. Wan, S. A. Hilderbrand, R.
Weissleder, R. Mazitschek, Angew. Chem. Int. Ed. 2012, 51,
4603–4606; Angew. Chem. 2012, 124, 4681–4684.
[6] L. Wu, K. Burgess, Chem. Commun. 2008, 4933–4935.
[7] T. V. Goud, A. Tutar, J.-F. Biellmann, Tetrahedron 2006, 62,
5084–5091.
Conclusions
In summary, the direct trifluoromethylation of the
BODIPY scaffold was achieved through interception of re-
active intermediates generated by treatment of reagent 7
with a thiol. The salient features of the protocol include
no requirement for dried solvents, an inert atmosphere, or
rigorous temperature control, and generally, short reaction
times (Ͻ10 min) are observed. Application of the protocol
to dye 2 resulted in novel derivative 9, which features a
Stokes shift that is approximately four times larger than
that of 2 and a fluorescence quantum yield of ΦF(9)THF
0.024.
=
[8] I. J. Arroyo, R. Hu, G. Merino, B. Z. Tang, E. Peña-Cabrera,
J. Org. Chem. 2009, 74, 5719–5722.
[9] a) K. Tram, H. Yan, H. A. Jenkins, S. Vassiliev, D. Bruce, Dyes
Pigm. 2009, 82, 392–395; b) A. Schmitt, B. Hinkeldey, M. Wild,
G. Jung, J. Fluoresc. 2009, 19, 755–758.
[10] a) M. Baruah, W. Qin, R. A. L. Vallée, D. Beljonne, T. Rohand,
W. Dehaen, N. Boens, Org. Lett. 2005, 7, 4377–4380; b) T. Ro-
hand, M. Baruah, W. Qin, N. Boens, W. Dehaen, Chem. Com-
mun. 2006, 266–268.
Experimental Section
4,4-Difluoro-8-(thiomethyl)-3-(trifluoromethyl)-4-bora-3a,4a-diaza-
s-indacene (9): 3,3-Dimethyl-1-(trifluoromethyl)-3H-1λ3,2-benz-
iodaoxole (7; 88 mg, 0.27 mmol, 1 equiv.) was added to a solution
of BODIPY-SMe (2; 0.25 g, 1.05 mmol, 3.94 equiv.) in CH2Cl2
(5 mL), and the mixture was stirred for 5 min. Then, a solution of
iPrSH (40 mg, 0.5 mmol, 1.97 equiv.) in CH2Cl2 (0.85 mL) was
added dropwise over the course of 2 min. After 1 h at ambient tem-
perature, the mixture was concentrated under reduced pressure.
Chromatographic purification (silica gel, hexane/EtOAc = 8:1 to
2:1, Rf = 0.04 in hexane/EtOAc = 8:1) was followed by a second
chromatographic purification (silica gel, pentane/ether = 1:1, Rf =
0.19), which afforded the pure product (30 mg, 37%) as a red crys-
talline solid, m.p. 155–156 °C. 1H NMR (400 MHz, CDCl3): δ =
7.99 (s, 1 H, C5H), 7.55 (d, J = 4.6 Hz, 1 H, C7H), 7.30 (d, J =
4.0 Hz, 1 H, C1H), 6.73 (d, J = 4.2 Hz, 1 H, C2H), 6.70 (d, J =
4.6 Hz, 1 H, C6H), 2.97 (s, 3 H) ppm. 13C NMR (101 MHz,
CDCl3): δ = 157.4 (C8), 145.8 (C5), 137.9 (q, J = 40.2 Hz, C3),
134.7 (C8CNβ), 134.5 (C8CNα), 131.2 (m, C7), 122.8 (m, C1), 120.9
(dd, J = 5.1, 2.5 Hz, C6), 120.44 (q, J = 270.0 Hz, C3CF3), 116.1
(td, J = 3.9, 2.1 Hz, C2), 20.6 (C8SCH3) ppm. 19F NMR (376 MHz,
CDCl3): δ = –60.3 (t, J = 11.5 Hz, 3 F, CF3), –145.1 (Ψqq, J =
27.9, 11.7 Hz, 2 F, BF2) ppm. 11B NMR (128 MHz, CDCl3): δ =
0.1 (t, J = 27.8 Hz, BF2) ppm. 15N NMR (40.6 MHz, CDCl3): δ =
181.4 (Nα), 202.0 (Nβ) ppm. HRMS (ESI): calcd. for
[11] C. Hansch, A. Leo, D. Hoekman, Exploring QSAR, vol. 2,
Hydrophobic, Electronic, and Steric Constants, American
Chemical Society, Washington, DC 1995.
[12] L. Li, B. Nguyen, K. Burgess, Bioorg. Med. Chem. Lett. 2008,
18, 3112–3116.
[13] S. Choi, J. Bouffard, Y. Kim, Chem. Sci. 2014, 5, 751–755.
[14] For the trifluoromethylation of aromatic systems, see: a) T.
Besset, C. Schneider, D. Cahard, Angew. Chem. Int. Ed. 2012,
51, 5048–5050; Angew. Chem. 2012, 124, 5134–5136, and refer-
ences cited therein.
[15] a) P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 2006, 12,
2579–2586; b) N. Santschi, A. Togni, Chimia 2014, 68, 419–
424.
[16] E. Mejía, A. Togni, ACS Catal. 2012, 2, 521–527.
[17] a) S. Mizuta, K. M. Engle, S. Verhoog, O. Galicia-López, M.
O’Duill, M. Médebielle, K. Wheelhouse, G. Rassias, A. L.
Thompson, V. Gouverneur, Org. Lett. 2013, 15, 1250–1253; b)
Y. Yasu, T. Koike, M. Akita, Angew. Chem. Int. Ed. 2012, 51,
9567–9571; Angew. Chem. 2012, 124, 9705–9709; c) Y. Yasu, T.
Koike, M. Akita, Chem. Commun. 2013, 49, 2037–2039.
[18] X. Wang, Y. Ye, S. Zhang, J. Feng, Y. Xu, Y. Zhang, J. Wang,
J. Am. Chem. Soc. 2011, 133, 16410–16413.
[19] a) Y. Li, A. Studer, Angew. Chem. Int. Ed. 2012, 51, 8221–
8224; Angew. Chem. 2012, 124, 8345–8348; b) V. Matousˇek, E.
Pietrasiak, L. Sigrist, B. Czarniecki, A. Togni, Eur. J. Org.
Chem. 2014, 3087–3092.
C11H8BF5N2NaS 329.0316 [M
C11H8BF5N2S (306.06): calcd. C 43.17, H 2.63, N 9.15; found
C 42.90, H 2.92, N 8.87.
+
Na+]; found 329.0316.
CCDC-1011443 contains the supplementary crystallographic data
for compound 9. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.
ac.uk/data_request/cif.
[20] a) B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc, A. Studer,
Angew. Chem. Int. Ed. 2013, 52, 10792–10795; Angew. Chem.
2013, 125, 10992–10995; b) B. Zhang, A. Studer, Org. Lett.
6374
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 6371–6375