5630
B. Banik et al. / Tetrahedron Letters 53 (2012) 5627–5630
M. Chem. A. Eur. J. 2010, 16, 4075; (j) Marziale, A. N.; Jantke, D.; Faul, S. H.;
Reiner, T.; Herdtweck, E.; Eppinger, J. Green Chem. 2011, 13, 169; (k) To, S. C.;
Kwong, F. Y. Chem. Commun. 2011, 47, 5079; (l) Zapf, A.; Ehrentraut, A.; Beller,
M. Angew. Chem., Int. Ed. 2000, 39, 4153; (m) Das, P.; Bora, U.; Tairai, A.; Sharma,
C. Tetrahedron Lett. 2010, 51, 1479; (n) Sarmah, C.; Borah, M.; Das, P. Appl.
Organomet. Chem. 2011, 25, 552.
tries 15 and 16). As expected, reactions with aryl iodides are
much quicker compared to the corresponding aryl bromides.
Unfortunately, the reaction condition was not compatible with
aryl chloride as substrate as only very poor yield was obtained in
the reaction between p-chloronitrobenzene with phenylboronic
acid even after increasing the catalyst loading up to 1 mol % (Table
3, entry 1). However, a search for an alternative condition revealed
that use of glycerol as co-solvent with water (in 1:1 proportion) at
a relatively elevated temperature (80 °C) significantly improved
the product formation (Table 3, entry 6). It may be mentioned that
glycerol has already been recognized as a sustainable solvent as it
has all the desirable properties of a green solvent such as low flam-
mability, high availability, low toxicity, biodegradability, obtained
from renewable feedstock, etc.12 Indeed, chlorobenzene (entry 10)
or aryl chlorides containing electron withdrawing substituents
such as p-chloronitrobenzene/p-chloroacetophenone (entries 6
and 9) and electron donating substituents such as p-chloroani-
sole/p-chlorotoluene (entries 11 and 12) reacted smoothly with
phenylboronic acid affording the desired biphenyls in moderate-
to-good yields. However, aryl chlorides with electron donating
substituent at the ortho-position are reluctant to react with phen-
ylboronic acid and very poor yield was obtained (entries 13 and
14). Noteworthy to mention that although we have obtained rela-
tively less yields of coupling products with aryl chlorides com-
pared to aryl bromides as substrates, these results are quite
significant as we are able to use aryl chlorides as substrates in
the Suzuki–Miyaura reaction using environmentally-benign reac-
tion media using reasonably low catalyst loading (1 mol %). In gen-
eral aryl chlorides are difficult substrates for coupling reactions
because of stronger C–Cl bond strength. To activate such chlorides
most of the existing catalytic systems still rely on phosphines as li-
gands and usually operate at drastic reaction conditions (e.g., up to
130 °C, Pd: up to 4 mol %) in environmentally least preferred reac-
tion media such as DMF, toluene, etc.2a,2e,2h,2l Nevertheless, there
also exist very few outstanding catalysts derived from N-based li-
gands that smoothly performed cross-coupling reactions with aryl
chlorides.3b,3f,13
3. (a) Singh, R.; Viciu, M. S.; Kramareva, N.; Navarro, O.; Nolan, S. P. Org. Lett. 1829,
2005, 7; (b) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S.
P. J. Am. Chem. Soc. 2006, 128, 4101; (c) Karimi, B.; Akhavan, P. F. Chem.
Commun. 2009, 3750; (d) Turkmen, H.; Can, R.; Cetinkaya, B. Dalton Trans. 2009,
7039; (e) Blakemore, J. D.; Chalkley, M. J.; Farnaby, J. H.; Guard, L. M.; Hazari,
N.; Incarvito, C. D.; Luzik, E. D.; Suh, H. W. Organometallics 1818, 2011, 30; (f)
Navarro, O.; Marion, N.; Oonishi, Y.; Kelly, R. A.; Nolan, S. P. J. Org. Chem. 2006,
71, 685.
4. (a) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2003, 44, 7993; (b) Li, J.-H.; Liu, W.-J.
Org. Lett. 2004, 6, 2809; (c) Huang, R.; Shaughnessy, K. H. Organometallics 2006,
25, 4105; (d) Chahen, L.; Therrien, B.; Suss-Fink, G. Eur. J. Inorg. Chem. 2007, 32,
5045; (e) Das, P.; Sarmah, C.; Tairai, A.; Bora, U. Appl. Organomet. Chem. 2011,
25, 283.
5. (a) Botella, L.; Najera, C. Angew. Chem., Int. Ed. 2002, 41, 179; (b) Rao, G. K.;
Kumar, A.; Ahmedz, J.; Singh, A. K. Chem. Commun. 2010, 46, 5954; (c) Susanto,
W.; Chu, C.-Y.; Ang, W. J.; Chou, T.-C.; Lo, L.-C.; Lam, Y. Green Chem. 2012, 14, 77.
6. (a) Leadbeater, N. E.; Marco, M. J. Org. Chem. 2003, 68, 888; (b) Leadbeater, N. E.;
Williams, V. A.; Barnard, T. M.; Collins, M. J. Org. Proc. Res. Dev. 2006, 10, 833; (c)
Li, S.; Lin, Y.; Cao, J.; Zhang, S. J. Org. Chem. 2007, 72, 4067; (d) Cohen, A.; Crozet,
M. D.; Rathelot, P.; Vanelle, P. Green Chem. 2009, 11, 1736; (e) Turkmen, H.;
Pelit, L.; Cetinkaya, B. J. Mol. Catal. A: Chem. 2011, 348, 88; (f) Peng, Y.-Y.; Liu, J.;
Lei, X.; Yin, Z. Green Chem. 2010, 12, 1072; (g) Ogo, S.; Takebe, Y.; Uehara, K.;
Yamazaki, T.; Nakai, H.; Watanabe, Y.; Fukuzumi, S. Organometallics 2006, 25,
331; (h) Ines, B.; SanMartin, R.; Churruca, F.; Dominguez, E.; Urtiaga, M. K.;
Arriortua, M. I. Organometallics 2008, 27, 2833; (i) Liu, C.; Ni, Q.; Bao, F.; Qiu, J.
Green Chem. 2011, 13, 1260.
7. (a) Gupta, K. C.; Sutar, A. K. Coord. Chem. Rev. 2008, 252, 1420; (b) Cozzi, P. G.
Chem. Soc. Rev. 2004, 33, 410; (c) Kasselouri, S. J. Coord. Chem. 1998, 1–2, 55.
8. (a) Rao, G. K.; Kumar, A.; Kumar, B.; Kumar, D.; Singh, A. K. Dalton Trans. 1931,
2012, 41; (b) Kostas, I. D.; Steele, B. R.; Terzis, A.; Amosova, S. V.; Martynov, A.
V.; Makhaeva, N. A. Eur. J. Inorg. Chem. 2006, 2642; (c) Kylmälä, T.; Kuuloja, N.;
Xu, Y.; Rissanen, K.; Franzén, R. Eur. J. Org. Chem. 2008, 4019; (d) Tas, E.; Kilic,
A.; Durgun, M.; Yilmaz, I.; Ozdemir, I.; Gurbuz, N. J. Organomet. Chem. 2009,
694, 446; (e) Srimani, D.; Sarkar, A. Tetrahedron Lett. 2008, 49, 6304; (f) Cui, J.;
Zhang, M.; Zhang, Y. Inorg. Chem. Commun. 2010, 13, 81; (g) Lai, Y.-C.; Chen, H.-
Y.; Hung, W.-C.; Lin, C.-C.; Hong, F.-E. Tetrahedron 2005, 61, 9484; (h) Bowes, E.
G.; Lee, G. M.; Vogels, C. M.; Decken, A.; Westcott, S. A. Inorg. Chim. Acta 2011,
377, 84.
9. Kasselouri, S.; Garoufis, A.; Kalkanis, G. Trans. Metal Chem. 1993, 18, 531.
10. (a) Synthesis of complex 1: A solution of the ligand L (0.075 g, 2.62 mmol) in
20 ml acetonitrile was added dropwise to a solution of [Pd(OAc)2] (0.117 g,
2.62 mmol) in 15 ml acetonitrile. After refluxing the reaction mixture for 6 h,
the yellow precipitate was filtered. The residue was washed with hexane and
recrystallized from dichloromethane and finally complex 1 was obtained as a
bright yellow solid. Yield: 82%; Anal. Calcd for C22H20N4O4Pd: C: 51.72; H:
3.94; N: 10.96. Found: C, 51.91; H, 3.91; N, 10.92. MS-ESI (MeOH): m/z: 510
In conclusion, we have developed a simple and highly efficient
phosphine-free catalytic system that can perform the Suzuki–
Miyaura cross-coupling reactions of aryl bromides and iodides in
aqueous media at room temperature, and for aryl chlorides in
aqueous-glycerol at 80 °C. High product yields, use of environ-
ment-friendly reaction media, relatively mild reaction condition,
use of nitrogen-based ligand, no TBAB was required, etc. are some
of the most significant advantages of our present catalytic system.
[M]+; Selected IR frequencies (cmꢀ1, KBr): 1631 (
mC@N: imine), 1589 (mC@N:
pyridine), 1676 (
m
COO: acetate); 1H NMR (400 MHz, CDCl3) d/ppm: 2.18 (s,
6H,CH3) 8.58 (s, 2H, CH@N), 7.47 (d, 2H, Py, J = 8.0 Hz), 7.89–6.91 (m, 10H,
Ph+Py). 13C NMR (100.62 MHz, CDCl3) d/ppm: 182.01 (COO), 152.85 (CH@N),
23.54 (CH3), 124.59–150.61 (Ph+Py); (b) Synthesis of complex 2: Complex 2 was
prepared by following the same procedure for synthesizing complex 1 using
ligand
L and Pd(OAc)2 in 1:2 molar ratio. Yield: 86%; Anal. Calcd for
C
26H26N4O8Pd2: C: 42.46; H: 3.56; N: 7.61. Found: C, 42.26; H, 3.53; N, 7.58.
MS-ESI (MeOH): m/z: 734 [Mꢀ1]+; Selected IR frequencies (cmꢀ1, KBr): 1664
Acknowledgements
(mC@N: imine), 1581(mC@N: pyridine), 1698 (m
C@O: acetate); 1H NMR (400 MHz,
CDCl3) d (ppm): 2.21 (s, 6H, CH3), 2.14 (s, 6H, CH3) 9.01 (d, 2H, Py, J = 5.2 Hz),
8.34 (s, 2H, CH@N), 7.30–8.24 (m, 10H, Ph+Py); 13C NMR (100.62 MHz, CDCl3) d
(ppm) 198.01 (COO), 172.60 (CH@N), 29.70 (CH3), 22.60 (CH3) 125.60–158.01
(Ph+Py).
We gratefully acknowledge the University Grants Commission
(UGC), New Delhi for a research Grant (No: 36-73/2008 (SR)).
The SAIF, NEHU, Shillong is gratefully acknowledged for various
analytical services.
11. General procedure for the Suzuki–Miyaura reaction: A 50 ml round bottom flask
was charged with
a mixture of aryl halide (0.5 mmol), arylboronic acid
(0.55 mmol), K2CO3 (1.5 mmol), and Pd catalyst (0.2 mol% for aryl bromide or
1 mol% for aryl chloride) and the mixture was stirred for required times at
room temperature in water (6 ml) for aryl bromides/at 80 °C in aqueous-
glycerol (6 ml) for aryl chlorides. After completion, the reaction mixture was
diluted with water (20 ml) and extracted with ether (20 ml ꢁ 3). The combined
extract was washed with brine (20 ml ꢁ 3) and dried over Na2SO4. After
evaporation of the solvent under reduced pressure, the residue was
chromatographed (silica gel, ethyl acetate/hexane 1:9) to obtain the desired
product. The products were confirmed by comparing the 1H NMR and mass
spectral data with authentic samples.
References and notes
1. (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Polshettiwar, V.;
Decottignies, A.; Len, C.; Fihri, A. Chem. Sus. Chem. 2010, 3, 502; (c) Fihri, A.;
Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.; Polshettiwar, V. Chem. Soc. Rev.
2011, 40, 5181; (d) Molnar, A. Chem. Rev. 2011, 111, 2251.
2. (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413; (b) Littke,
F. A.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176; (c) Phan, N. T. S.; Sluys, M.
V. D.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609; (d) Joshaghani, M.;
Faramarzi, E.; Rafiee, E.; Daryanavard, M.; Xiao, J.; Baillie, C. J. Mol. Catal. A:
Chem. 2007, 273, 310; (e) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41,
1461; (f) Dai, W.-M.; Zhang, Y. Tetrahedron Lett. 2005, 46, 1377; (g) Ullah, E.;
McNulty, J.; Robertson, A. Tetrahedron Lett. 2009, 50, 5599; (h) Ghosh, R.;
Adarsh, N. N.; Sarkar, A. J. Org. Chem. 2010, 75, 5320; (i) Bolliger, J. L.; Frech, C.
12. (a) Ricordi, V. G.; Freitas, C. S.; Perin, G.; Lenardão, E. J.; Jacob, R. G.; Savegnago,
L.; Alves, D. Green Chem. 2012, 14, 1030; (b) Gu, Y.; Jérôme, F Green Chem. 2010,
12, 1127.
13. (a) Yang, W.; Lui, C.; Qiu, J. Chem. Commun. 2010, 46, 2659; (b) Lee, D.-H.; Jin,
M.-J. Org. Lett. 2011, 13, 252.