1210 J ournal of Chemical and Engineering Data, Vol. 45, No. 6, 2000
international temperature scale 1990. Addendum to J . Phys. Ref.
Data 1987, 16, 893. J . Phys. Chem. Ref. Data 1993, 22, 783-
787.
the lack of a precise analysis of the composition of the
substances used by different authors in their measure-
ments. Except for a few cases, the composition of sub-
stances reported in terms of the relative amount of
stereoisomers is not available. Further, and very likely
even more important, is the fact that most of the literature
data were obtained by measurement of a boiling temper-
ature at a reduced pressure in studies of reaction pathways.
Such measurements provide only a very inaccurate value
of vapor pressure.
(14) Roha´cˇ, V.; Ru˚zˇicˇka, V.; Ru˚zˇicˇka, K.; Poledn´ıcˇek, M.; Aim, K.; J ose,
J .; Za´bransky´, M. Recommended Vapour and Sublimation Pres-
sures and Related Thermal Data for Chlorobenzenes. Fluid Phase
Equilib. 1999, 157, 121-142.
(15) Roha´cˇ, V.; Musgrove, J . E.; Ru˚zˇicˇka, K.; Ru˚zˇicˇka, V.; Za´bransky´,
M.; Aim, K. Thermodynamic properties of dimethyl phthalate
along the (vapour+liquid) saturation curve. J . Chem. Thermodyn.
1999, 31, 971-986.
(16) Aim, K. Estimation of Vapor-Liquid Equilibrium Parameters. 7th
International Congress of Chemical and Process Engineering
CHISA′81, Prague, 1981; paper D2.23.
(17) Aim, K. Program for the Correlation of Saturated Vapor Pressure
Data, Report No. 1/81; Institute of Chemical Process Fundamen-
tals: Prague, 1981.
(18) Ru˚zˇicˇka, K.; Majer, V. Simple and Controlled Extrapolation of
Vapor Pressures towards the Triple Point. AIChE J . 1996, 42,
1723-1740.
(19) TRC Thermodynamic Tables. Hydrocarbons; Thermodynamics
Research Center, Texas Engineering Experiment Station, The
Texas A&M University System: College Station, TX, 2000.
(20) Grosse, A. V.; Mavity, J . M.; Mattox, W. J . Catalytic Dehydroge-
nation of Polycyclic Naphthalenes. Ind. Eng. Chem. 1946, 38,
1041-1045.
(21) Schneider, A.; Warren, R. W.; J anoski, E. J . Formation of
Perhydrophenalenes and Polyalkyladamantanes by Isomerization
of Tricyclic Perhydroaromatics. J . Org. Chem. 1966, 31, 1617-
1625.
(22) Zakharkin, L. I.; Zhigareva, G. G.; Pryanishnikov, A. P.; Ovseenko,
S. T. Poluchenie 1,3-dimetiladamantana iz cis, trans, trans-1,5,9-
ciklododekatriena. Izv. Akad. Nauk SSSR Ser. Khim. 1986, 2256-
2259.
(23) Linstead, R. P.; Whetstone, R. R.; Levine, P. The stereochemistry
of catalytic hydrogenation. VI. The hydrogenation of 9-phenantrol
and related substances and the identification of three of the
possible stereoisomeric forms of the perhydrophenanthrene ring.
J . Am. Chem. Soc. 1942, 2014-2022.
(24) Anonymous Properties of hydrocarbons of high molecular weight.
API Res. Rep. 42; Penn State University: State College, PA, 1968.
(25) Pinkney, P. S.; Nesty, G. A.; Wiley, R. H.; Marvel, C. S.
Hydrophenanthrenes and related ring systems from dieneynes.
J . Am. Chem. Soc. 1936, 58, 972-976.
(26) Gudzinowicz, B. J .; Campbell, R. H.; Adamas, J . S. J . Chem. Eng.
Data 1963, 8, 201-204.
Ack n ow led gm en t
We are grateful to Milan Za´bransky´ for his help in the
literature search and to Randolph Wilhoit for providing the
unpublished API vapor pressure data for perhydrophenan-
threne.
Liter a tu r e Cited
(1) Allinger, N. L.; Gorden, B. J .; Tyminski, I. J .; Wuesthoff, M. T.
Conformational Analysis. LXX. The Perhydrophenanthrenes. J .
Org. Chem. 1971, 36, 739-745.
(2) Durland, J . R.; Adkins, H. Hydrophenanthrenes. J . Am. Chem.
Soc. 1938, 60, 1501-1505.
(3) Linstead, R. P.; Walpole, A. L. Fused Carbon Rings. Part XVI.
The Stereoisomerism of the Perhydrophenantrenes: Preliminary
Investigations. J . Chem. Soc. 1939, 842-850.
(4) Cook, J . W.; McGinnis, N. A.; Mitchell, S. Hydroanthracenes and
Hydrophenanthrenes. J . Chem. Soc. 1944, 286-293.
(5) Eimasry, A. H.; Gisvold, O. 19-Norsteroids of Unnatural Config-
uration from Ergosterol. J . Pharm. Sci. 1970, 59, 449-458.
(6) Carson, A. S.; Laye, P. G.; Steele, W. V.; J ohnston, D. E.;
McKervey, M. A. The enthalpy of formation of diamantane. J .
Chem. Thermodyn. 1971, 3, 915-918.
(7) Boldt, P.; Arensmann, E.; Blenkle, M.; Kersten, H.; Tendler, H.;
Trog, R.-S.; J ones, P. G.; Doring, D. Synthesis of Stereoisomeric
Ufolanes. Chem. Ber. 1992, 125, 1147-1157.
(8) Toppinen, S.; Rantakyla, T.-K.; Salmi, T.; Aittamaa, J . Kinetics
of the Liquid-Phase Hydrogenation of Benzene and Some Mono-
substituted Alkylbenzenes over
Chem. Res. 1996, 35, 1824-1833.
(9) Bond, G. C. Catalysis by Metals; Academic Press: London, 1962.
(10) Hanika, J .; Sporka, K.; Macoun, P.; Kysilka, V. Catalyst selection
for hydrogenation of 1,2-dihydroacenaphthylene. Collect. Czech.
Chem. Commun. 1999, 63, 1945-1953.
a Nickel Catalyst. Ind. Eng.
(27) Nuzzi, M. Thermal data and thermodynamic functions of perhy-
drophenanthrene. Riv. Combust. 1982, 36, 41-50.
(28) Boelhouwer, J . W. M.; Nederbragt, G. W.; Verberg, G. W. Viscosity
data of organic liquids. Appl. Sci. Res., Sect. A 1950, 2, 249.
(11) Aim, K. A modified ebuliometric method for high-boiling sub-
stances: vapour pressures of 2-chlorobenzonitrile and 4-chlo-
robenzonitrile at temperatures from 380 K to 490 K. J . Chem.
Thermodyn. 1994, 26, 977-986.
Received for review May 1, 2000. Accepted September 11, 2000.
This work was supported by the Grant Agency of the Czech
Republic (Grant No. 213/96/1162) and by the Ministry of Education
of the Czech Republic (Grant No. CB MSM 22340008). Diana Zala
acknowledges the support of the IAESTE Czech Republic, ICT
Prague.
(12) Aim, K. Saturated Vapor Pressure Measurements on Isomeric
Mononitrotoluenes at Temperatures between 380 and 460 K. J .
Chem. Eng. Data 1994, 39, 591-594.
(13) Wagner, W.; Pruss, A. International equations for the saturation
properties of ordinary water substance. Revised according to the
J E000130N