L. Casella et al.
FULL PAPER
helium flow cryostat with
a
specially designed quartz sample rod
[5] K. A. Magnus, B. Hazes, H. Ton-That, C. Bonaventura, J. Bonaven-
tura, W. G. J. Hol, Proteins: Struct. Funct. Genet. 1994, 19, 302 ± 309.
[6] a) N. Kitajima, Y. Moro-oka, Chem. Rev. 1994, 94, 737 ± 757; b) K. D.
(CryoVac). The sample rod contained vacuum and gas inlets as well as a
silicon septum through which solutions could be injected under inert
atmosphere. The CuI complex [Cu2(L-66)]2 was prepared directly in the
sample rod under Ar and after cooling to 808C, oxygen was bubbled
through the solution for ꢁ 15 min, generating the brown peroxo complex in
solution. Concentrations of this species were estimated to be <1mm. 18O-
substitution experiments were performed by oxygenating the [Cu2(L-66)]2
solution with 18O2 gas (99%) obtained from Chemotrade.
Â
Karlin, Z. Tyeklar, Adv. Inorg. Biochem. 1994, 9, 123 ± 172; c) K. D.
Karlin, S. Kaderli, A. D. Zuberbühler, Acc. Chem. Res. 1997, 30, 139 ±
147; d) W. B. Tolman, Acc. Chem. Res. 1997, 30, 227 ± 237.
[7] a) J. E. Bol, W. L. Driessen, R. Y. N. Ho, B. Maase, L. Que, Jr., J.
Reedijk, Angew. Chem. 1997, 109, 1022 ± 1025; Angew. Chem. Int. Ed.
Engl. 1997, 36, 998 ± 1000; b) K. D. Karlin, D.-H. Lee, S. Kaderli, A. D.
Zuberbühler, Chem. Commun. 1997, 475 ± 476.
[8] a) K. D. Karlin, M. S. Nasir, B. I. Cohen, R. W. Cruse, S. Kaderli, A. D.
Zuberbühler, J. Am. Chem. Soc. 1994, 116, 1324 ± 1336; b) E. Pidcock,
H. V. Obias, C. X. Zhang, K. D. Karlin, E. I. Solomon, J. Am. Chem.
Soc. 1998, 120, 7841 ± 7847; c) E. Pidcock, H. V. Obias, M. Abe, H.-C.
Liang, K. D. Karlin, E. I. Solomon, J. Am. Chem. Soc. 1999, 121,
1299 ± 1308.
The kinetics of dioxygen binding by [Cu2(L-66)]2 were studied at 362 nm,
upon injecting a small volume of a concentrated solution of the CuI
complex in acetone into a large volume of the solvent saturated with
dioxygen at low temperature. The kinetic constant kobs was obtained from
fitting of the data of absorbance versus time at 788C to the equation for
the reversible oxygenation equilibrium (even though at 788C oxygen-
ation of the complex is nearly complete), Equations (3) ± (5), in which
[CuI2]0 is the initial concentration of [Cu2(L-66)]2
.
[9] a) S. Mahapatra, V. G. Young, Jr., S. Kaderli, A. D. Zuberbühler,
W. B. Tolman, Angew. Chem. 1997, 109, 125 ± 127; Angew. Chem. Int.
Ed. Engl. 1997, 36, 130 ± 133; b) S. Mahapatra, S. Kaderli, A. Llobet,
k1
CuI2 O2
Cu2O2
(3)
(4)
(5)
k
Â
1
Y.-M. Neuhold, T. Palanche, J. A. Halfen, V. G. Young, Jr., T. A.
0
k1O2CuI2
Kaden, L. Que, Jr., A. D. Zuberbühler, W. B. Tolman, Inorg. Chem.
1997, 36, 6343 ± 6356.
[Cu2O2]
{1 exp[ (k1[O2] k 1)t]}
k1O2 k
1
[10] a) V. Mahadevan, Z. Hou, A. P. Cole, D. E. Root, T. K. Lal, E. I.
Solomon, T. D. P. Stack, J. Am. Chem. Soc. 1997, 119, 11996 ± 11997;
b) J. L. DuBois, P. Mukherjee, A. M. Collier, J. M. Mayer, E. I.
Solomon, B. Hedman, T. D. P. Stack, K. O. Hodgson, J. Am. Chem.
Soc. 1997, 119, 8578 ± 8579; c) S. Itoh, H. Nakao, L. M. Berreau, T.
Kondo, M. Komatsu, S. Fukuzumi, J. Am. Chem. Soc. 1998, 120, 2890 ±
2899; d) W. E. Allen, T. N. Sorrell, Inorg. Chem. 1997, 36, 1732 ± 1734.
[11] a) J. A. Halfen, V. G. Joung, Jr., W. B. Tolman, Inorg. Chem. 1998, 37,
2102 ± 2103; b) H. V. Obias, Y Lin, N. N. Murthy, E. Pidcock, E. I.
Solomon, M. Ralle, N. J. Blackburn, Y.-M. Neuhold, A. D. Zuberbüh-
ler, K. D. Karlin, J. Am. Chem. Soc. 1998, 120, 12960 ± 12961; c) V.
Mahadevan, J. L. DuBois, B. Hedman, K. O. Hodgson, T. D. P. Stack,
J. Am. Chem. Soc. 1999, 121, 5583 ± 5584.
kobs k1[O2] k
1
The solubility of dioxygen in acetone at low temperature was taken from
the literature.[9b] The deoxygenation of [Cu2(L-66)(O2)]2 is slow at low
temperature and was followed spectrally after applying a vacuum to the
oxygenated solution and purging with an inert gas. Under these conditions,
deoxygenation proceeded until the system equilibrated to the residual
dioxygen pressure. To achieve full deoxygenation, application of a second
vacuum/purge cycle would be necessary, but since this process causes base
line problems in the optical readings we limited the spectral observation to
the first cycle.
The phenol oxygenation experiments were carried out under Ar by adding
[12] a) B. Salvato, M. Santamaria, M. Beltramini, G. Alzuet, L. Casella,
Biochemistry 1998, 37, 14065 ± 14077; b) R. P. Ferrari, E. Laurenti,
E. M. Ghibaudi, L. Casella, J. Inorg. Biochem. 1997, 68, 61 ± 69.
[13] a) L. Casella, E. Monzani, M. Gullotti, D. Cavagnino, G. Cerina, L.
Santagostini, R. Ugo, Inorg. Chem. 1996, 35, 7516 ± 7525; b) L.
Casella, M. Gullotti, R. Radaelli, P. Di Gennaro, J. Chem. Soc. Chem.
Commun. 1991, 1611 ± 1612.
[14] E. Monzani, L. Quinti, A. Perotti, L. Casella, M. Gullotti, L.
Randaccio, S. Geremia, G. Nardin, P. Faleschini, G. Tabbì, Inorg.
Chem. 1998, 37, 553 ± 562.
a
solution of sodium 4-carbomethoxyphenolate (0.024 mmol) in dry
acetone (1 mL) to [Cu2(L-66)(O2)]2 (0.024 mmol, excess O2 removed) in
the same solvent (40 mL) at 808C. After 15 min, the reaction was allowed
to proceed at 608C. Samples (10 mL) of the solution were withdrawn and
immediately quenched in H2SO4 (0.2m, 1 mL). The mixture was taken to
dryness, and the residue was extracted with chloroform and analyzed by
1H NMR and HPLC (after addition of
a standard) as described
previously.[13, 14] Total recovery of catechol plus unreacted phenol did not
exceed 50%. By-products from side reactions are evident in the NMR
spectra and HPLC traces.
[15] For solubility reasons, the low-temperature oxygenation experiments
could be carried out only in dilute acetone solution. The solubility of
the complex in solvents like dichloromethane or THF is extremely
low, while in propionitrile no appreciable dioxygen adduct formation
was observed at low temperature.
[16] a) N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto,
T. Kitagawa, K. Toriumi, K. Tatsumi, A. Nakamura, J. Am. Chem. Soc.
1992, 114, 1277 ± 1291; b) M. J. Baldwin, D. E. Root, J. E. Pate, K.
Fujisawa, N. Kitajima, E. I. Solomon, J. Am. Chem. Soc. 1992, 114,
10421 ± 10431.
Acknowledgments
This work was supported by the Italian MURST and by DFG (Tu58/7-1).
[1] a) D. A. Robb, in Copper Proteins and Copper Enzymes, Vol. II (Ed.:
R. Lontie), CRC, Boca Raton, FL, 1984, pp. 207 ± 241; b) E. I.
Solomon, U. M. Sundaram, T. E. Machonkin, Chem. Rev. 1996, 96,
2563 ± 2605.
[17] J. Ling, L. P. Nestor, R. S. Czernuszewicz, T. G. Spiro, R. Fraczkiewicz,
K. D. Sharma, T. M. Loehr, J. S. Sanders-Loehr, J. Am. Chem. Soc.
1994, 116, 7682 ± 7691.
[18] K. D. Karlin, J. C. Hayes, Y. Gultneh, R. W. Cruse, J. W. McKown, J. P.
Hutchinson, J. Zubieta, J. Am. Chem. Soc. 1984, 106, 2121 ± 2128.
[19] L. Casella, O. Carugo, M. Gullotti, S. Garofani, P. Zanello, Inorg.
Chem. 1993, 32, 2056 ± 2067.
[20] B. S. Wolfenden, R. R. Willson, J. Chem. Soc. Perkin Trans. 2 1982,
805 ± 812.
Â
Â
Â
[2] a) A. Sanchez-Ferrer, J. N. Rodríguez-Lopez, F. García-Canovas, F.
García-Carmona, Biochim. Biophys. Acta 1995, 1247, 1 ± 11; b) G.
Prota, Med. Res. Rev. 1988, 8, 525 ± 556; c) C. W. G. Van Gelder, W. H.
Flurkey, H. J. Wichers, Phytochemistry 1997, 45, 1309 ± 1323.
[3] a) R. L. Jolley, Jr., L. H. Evans, H. S. Mason, Biochem. Biophys. Res.
Commun. 1972, 46, 878 ± 884; b) R. L. Jolley, Jr., L. H. Evans, N.
Makino, H. S. Mason, J. Biol. Chem. 1974, 249, 335 ± 345.
[4] E. I. Solomon, F. Tuczek, D. E. Root, C. A. Brown, Chem. Rev. 1994,
94, 827 ± 856.
[21] P. A. Adams, J. Chem. Soc. Perkin Trans 2 1990, 1407 ± 1414.
Received: November 5, 1999 [F2119]
522
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0947-6539/00/0603-0522 $ 17.50+.50/0
Chem. Eur. J. 2000, 6, No. 3