R. J. Ansell et al.
[9] A. W. Dearing, E. E. Reid, J. Am. Chem. Soc. 1928, 50, 3058–3062.
[10] G. Sumrell, G. E. Ham, J. Am. Chem. Soc. 1956, 78, 5573–5575.
[11] a) C. Friedel, J. M. Crafts, Ann. Chim. Phys. 1866, 4, 5–51; b) H. W.
Post, C. H. J. Hofrichter, J. Org. Chem. 1940, 5, 443–448; c) R. P.
Nahrain, R. C. Mehrotra, J. Indian Chem. Soc. 1962, 39, 855–859.
[12] K. C. Chen, T. Tsuchiya, J. D. Mackenzie, J. Non-Cryst. Solids 1986,
81, 227–237.
[13] K. G. Sharp, J. Sol–Gel Sci. Technol. 1994, 2, 35–41.
[14] a) R. Nakao, K. Oka, T. Fukumoto, Bull. Chem. Soc. Jpn. 1981, 54,
1267–1268; b) M. A. Brook, T. H. Chan, Synthesis 1983, 201–203.
[15] a) C. M. Langkammerer (E. I. du Pont de Nemours, US), US
2490691, 1949; b) B. E. Ostberg (Polaroid Corp, US), US 2397287,
1946; c) H. G. Emblem, K. Hargreaves, C. E. Oxley, J. Appl. Chem.
1968, 18, 97–99.
[16] a) R. C. Mehrotra, B. C. Pant, J. Indian Chem. Soc. 1963, 40, 62 3–
628; b) R. C. Mehrotra, B. C. Pant, Indian J. Chem. 1963, 1, 380–
381; c) R. C. Mehrotra, R. P. Narain, Indian J. Chem. 1968, 6, 110–
111.
[17] R. Portanova, L. H. J. Lajunen, M. Tolazzi, J. Piispanen, Pure Appl.
Chem. 2003, 75, 495–540.
[18] a) R. Tacke, C. Burschka, I. Richter, B. Wagner, R. Willecke, J. Am.
Chem. Soc. 2000, 122, 8480–8485; b) I. Richter, M. Penka, R. Tacke,
Inorg. Chem. 2002, 41, 3950–3955; c) R. Tacke, R. Bertermann, C.
Burschka, S. Dragota, Z. Anorg. Allg. Chem. 2004, 630, 2006–2012;
d) R. Tacke, M. Penka, F. Popp, I. Richter, Eur. J. Inorg. Chem.
2002, 1025–1028.
[19] a) M. Muehleisen, R. Tacke, Organometallics 1994, 13, 3740–3742;
b) M. Muehleisen, R. Tacke, Chem. Ber. 1994, 127, 1615–1617; c) R.
Tacke, A. Lopez-Mras, P. G. Jones, Organometallics 1994, 13, 1617–
1623; d) R. Tacke, R. Bertermann, C. Burschka, S. Dragota, M.
Penka, I. Richter, J. Am. Chem. Soc. 2004, 126, 14493–14505; e) R.
Tacke, M. Muehleisen, P. G. Jones, Angew. Chem. 1994, 106, 1250–
1251; Angew. Chem. Int. Ed. Engl. 1994, 33, 1186–1188.
[20] a) F. Brunet, B. Cabane, M. Dubois, B. Perly, J. Phys. Chem. 1991,
95, 945–951; b) J. Sanchez, A. McCormick, J. Phys. Chem. 1992, 96,
8973–8979.
Experimental Section
1H NMR spectra were recorded on a Bruker Avance 500 spectrometer
operating at 500 MHz. Proton-decoupled 13C NMR spectra were record-
ed on a Bruker DPX 300 spectrometer operating at 75.5 MHz. Proton-
decoupled 29Si NMR spectra were recorded on a Bruker DRX 500 spec-
trometer operating at 99.4 MHz, an aquisition time of 0.43 s with a delay
of 5 s was used and the number of scans was 256, unless otherwise stated.
Acid (0.375 mmol) was dissolved completely in [D4]methanol (0.75 mL),
and 1H and 13C spectra were recorded. Subsequently Si
(0.442mmol) was added immediately before placing the sample into the
(OMe)4
magnet and further spectra of the acid+Si(OMe)4 mixtures recorded at
T
increasing intervals. 1H and 13C spectra were recorded in 0.518 cm boro-
silicate glass tubes. Amounts for 29Si NMR spectra are four times the
quantities above and spectra were recorded in 1.021 cm teflon tubes.
29Si NMR spectra were recorded only after mixing acid+Si
ACHTREUNG
were compared to a Si
ACHTREUNG
tive to SiMe4 as internal standard. NMR spectra were recorded in a labo-
ratory maintained at 188C. Between measurements, samples were left at
RT in a laboratory without temperature control (15–258C).
Mass spectra were recorded on a Bruker micrOTOF instrument by using
direct injection electrospray introduction in negative-ion mode with a
total capillary voltage of 4500 V and a capillary exit voltage of ꢀ100 V.
Prior to injecting the sample, LiOOCH (10 mm) in MeOH/iPrOH (9:1 v/
v) was injected at 9 mLminꢀ1 to provide a calibration signal. The capillary
was then flushed with H2O/MeCN (1:1 v/v) at 0.3 mLminꢀ1 before the
sample was introduced at 4 mLminꢀ1. Data were collected for at least
2min or until a constant signal was obtained. Mass spectra were recorded
in a laboratory maintained at 188C. Prior to measurements, samples were
left at RT in a laboratory without temperature control (15–258C).
Acknowledgement
[21] M. Mazur, V. Mlynarik, M. Valko, P. Pelikan, Appl. Magn. Reson.
1999, 16, 547–557.
[22] J. Schraml, J. Pola, V. Chvalovsky, M. Magi, E. Lippma, J. Organo-
met. Chem. 1973, 49, C19–C21.
The authors are grateful to Tanya Marinko-Covell for technical assistance
with the MS, and acknowledge the support of the EPSRC via grant
number EP/C010973/1.
[23] T. N. M. Bernards, M. J. van Bommel, A. H. Boonstra, J. Non-Cryst.
Solids 1991, 134, 1–13.
[1] E. Haslam, Tetrahedron 1980, 36, 2409–2433.
[2] T. A. Houston, B. L. Wilkinson, J. T. Blanchfield, Org. Lett. 2004, 6,
679–681.
[3] T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 2005, 7, 5047–5050.
[4] C. J. Brinker, G. W. Scherer, Sol–gel science: The physics and
chemistry of sol–gel processing, Academic Press, London, 1990.
[5] E. J. A. Pope, J. D. Mackenzie, J. Non-Cryst. Solids 1986, 87, 185–
198.
[24] a) L. M. Ng, Macromolecules 1995, 28, 6471–6476; b) G. Zehl, S.
Bischoff, F. Mizukami, H. Isutzu, M. Bartoszek, H. Jancke, B.
Lucke, K. Maeda, J. Mater. Chem. 1995, 5, 1893–1897.
[25] T. Løver, W. Henderson, G. A. Bowmaker, J. M. Seakins, R. P.
Cooney, J. Mater. Chem. 1997, 7, 1553–1558.
[26] P. Bussian, F. Sobott, B. Brutschy, W. Schrader, F. Schuth, Angew.
Chem. 2000, 112, 4065–4069; Angew. Chem. Int. Ed. 2000, 39, 3901–
3905.
[6] a) C. B. Hurd, J. Phys. Chem. 1936, 40, 21–26; b) E. I. Klabunovskii,
A. E. Agronomov, L. M. Volkova, A. A. Balandin, Izv. Akad. Nauk
SSSR Ser. Khim. 1963, 228–234; c) H. Izutsu, F. Mizukami, Y. Kiyo-
zumi, K. Maeda, J. Am. Ceram. Soc. 1997, 80, 2581–2589; d) H.
Izutsu, F. Mizukami, T. Sashida, K. Maeda, Y. Kiyozumi, Y. Akiya-
ma, J. Non-Cryst. Solids 1997, 212, 40–48; e) J. B. Pang, K. Y. Qiu,
Y. Wei, J. Non-Cryst. Solids 2001, 283, 101–108; f) J.-Y. Zheng, J. B.
Pang, K. Y. Qiu, Y. Wei, J. Inorg. Organomet. Polym. 2001, 11, 103–
113; g) H. Nakamura, Y. Matsui, J. Am. Chem. Soc. 1995, 117,
2651–2652; h) F. Miyaji, S. A. Davis, J. P. H. Charmant, S. Mann,
Chem. Mater. 1999, 11, 3021–3024.
[27] R. E. Bossio, S. D. Callahan, A. E. Stiegman, A. G. Marshall, Chem.
Mater. 2001, 13, 2097–2102.
[28] K. Eggers, T. Eichner, J. Woenckhaus, Int. J. Mass Spectrom. 2005,
244, 72–75.
[29] N. S. Leznov, L. A. Sabun, K. A. Andrianov, Zh. Obshch. Khim.
1959, 29, 1518–1522; K. A. Andrianov, in Metalorganic Polymers,
Vol. 8, Wiley, New York, 1965, pp. 168–177.
[30] a) A. Campero, R. Arroyo, C. Sanchez, J. Livage in Ultrastructure
processing of advanced ceramics (Eds.: J. D. Mackenzie, D. R.
Ulrich), Wiley, New York, 1988; b) C. Sanchez, J. Livage, M. Henry,
F. Babonneau, J. Non-Cryst. Solids 1988, 100, 65–76.
[7] C. M. Zaremba, G. D. Stucky, Curr. Opin. Solid State Mater. Sci.
1996, 1, 425–429.
[8] a) H. G. M. Hill, J. A. Nuth, Astrobiology 2003, 3, 291–304; b) I.
Parsons, M. R. Lee, J. V. Smith, Proc. Natl. Acad. Sci. USA 1998, 95,
15173–15176.
Received: December 21, 2006
Published online: April 19, 2007
4664
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 4654 – 4664