Full Papers
6H), 0.89 (dd, J=8.8, 5.2 Hz, 3H); 13C NMR (75 MHz, Acetone-d6): δ
[ppm]=202.69, 163.36, 162.59, 132.66, 121.38, 113.12, 102.26,
[5] a) T. Yamazaki, M. Makihara, K. Komura, J. Mol. Catal. A 2017, 426, 170–
176; b) J. C. Kim, K. Cho, S. Lee, R. Ryoo, Catal. Today 2015, 243, 103–
108; c) F. Hu, M. Patel, F. Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H.
He, M. Szostak, J. Am. Chem. Soc. 2015, 137, 14473–14480; d) M. H.
Sarvari, H. Sharghi, J. Org. Chem. 2004, 69, 6953–6956; e) T. Yamato, C.
Hideshima, G. K. S. Prakash, G. A. Olah, J. Org. Chem. 1991, 56, 3955–
3957.
1
2
3
4
5
31.57, 29.80, 29.69, 29.26, 25.37, 22.40, 13.44; GC-MS (EI+, 70 eV):
+
m/z (%)=236.1 [M+] (15), 221.1 [C13H17O3+] (7), 165.0 [C9H9O3
]
(100).
[6] a) R. H. Vekariya, J. Aube, Org. Lett. 2016, 18, 3534–3537; b) Z. P. Wang,
J. Y. Wang, J. R. Li, M. L. Feng, G. D. Zou, X. Y. Huang, Chem. Commun.
2015, 51, 3094; c) N. Aribert, S. Camy, Y. P. Lucchese, J.-S. Condoret, P.
Cognet, International Journal of Chemical Reactor Engineering 2010, 8.
[7] Y. Liu, G. Meng, R. Liu, M. Szostak, Chem. Commun. 2016, 52, 6841–6844.
[8] R. Murashige, Y. Hayashi, S. Ohmori, A. Torii, Y. Aizu, Y. Muto, Y. Murai, Y.
Oda, M. Hashimoto, Tetrahedron 2011, 67, 641–649.
6
7
8
9
1-(5-chloro-2,4-dihydroxyphenyl)ethan-1-one (3f)
1H NMR (300 MHz, Acetone-d6): δ [ppm]=12.58 (s, 1H), 9.99 (s, 1H),
7.91 (s, 1H), 6.51 (s, 1H), 2.62 (s, 3H); 13C NMR (75 MHz, Acetone-d6):
δ [ppm]=202.72, 163.37, 159.70, 132.54, 113.94, 111.52, 103.85,
25.55; GC-MS (EI+, 70 eV): m/z (%)=186.0 [M+] (41), 171.0
[C7H4ClO3+] (100).
10
11
12
13
14
15
16
17
18
19
[9] J. S. Brown, R. Gläser, C. L. Liotta, C. A. Eckert, Chem. Commun. 2000,
1295–1296.
[10] a) J. Almario, M. Bruto, J. Vacheron, C. Prigent-Combaret, Y. Moënne-
Loccoz, D. Muller, Front. Microbiol. 2017, 8, 1218; b) A. Hayashi, H. Saitou
T. Mori, I. Matano, H. Sugisaki, K. Maruyama, Biosci. Biotechnol. Biochem.
2014, 76, 559–566; c) F. Yang, Y. Cao, Appl. Microbiol. Biotechnol. 2012,
93, 487–495.
[11] a) N. G. Schmidt, A. Żądło-Dobrowolska, V. Ruppert, C. Höflehner, B.
Wiltschi, W. Kroutil, Appl. Microbiol. Biotechnol. 2018, 1–12; b) N. G.
Schmidt, T. Pavkov-Keller, N. Richter, B. Wiltschi, K. Gruber, W. Kroutil,
Angew. Chem. Int. Ed. 2017, 56, 7615–7619; c) N. G. Schmidt, W. Kroutil,
Eur. J. Org. Chem. 2017, 39, 5865–5871.
N-phenylacetamide (3i)
1H NMR (300 MHz, CDCl3): δ [ppm]=7.52 (d, J=7.9 Hz, 2H), 7.34 (t,
J=7.9 Hz, 2H), 7.12 (t, J=7.4 Hz, 1H), 2.19 (s, 3H); 13C NMR (75 MHz,
CDCl3): δ [ppm]=168.24, 137.85, 128.99, 124.30, 119.85, 24.60; GC-
MS (EI+, 70 eV): m/z (%)=135.1 [M+] (27), 93.1 [C6H7N+] (100).
[12] A. Żądło-Dobrowolska, N. G. Schmidt, W. Kroutil, Chem. Commun. 2018,
20 N-(3-hydroxyphenyl)acetamide (3j)
54, 3387–3390.
21
22
23
1H NMR (300 MHz, DMSO-d6): δ [ppm] 9.77 (s, 1H), 9.31 (s, 1H), 7.18
[13] a) S. H. Younes, Y. Ni, S. Schmidt, W. Kroutil, F. Hollmann, ChemCatChem
2017, 9, 1389–1392; b) P. Falus, L. Cerioli, G. Bajnóczi, Z. Boros, D.
Weiser, J. Nagy, J. D. Tessaro, S. Servi, L. Poppe, Adv. Synth. Catal. 2016,
358, 1608–1617; c) D. Tessaro, L. Cerioli, S. Servi, F. Viani, P. D’Arrigo,
Adv. Synth. Catal. 2011, 353, 2333–2338; d) N. Weber, E. Klein, K.
Vosmann, K. D. Mukherjee, APP Australas. Plant Pathol. 2004, 64, 800–
805; e) P. J. Um, D. G. Drueckhammer, J. Am. Chem. Soc. 1998, 120,
5605–5610.
(t, J=1.9 Hz, 1H), 7.04 (t, J=8.0 Hz, 1H), 6.92 (d, J=8.1 Hz, 1H),
6.49–6.32 (m, 1H), 2.01 (s, 3H); 13C NMR (75 MHz, DMSO-d6): δ [ppm]
168.58, 157.98, 140.80, 129.69, 110.54, 110.19, 106.61, 24.50; GC-MS
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
(EI+, 70 eV): m/z (%)=151.1 [M+] (44), 109.1 [C6H7NO+] (100).
[14] M. N. Burhardt, A. Ahlburg, T. Skrydstrup, J. Org. Chem. 2014, 79, 11830–
11840.
Acknowledgements
[15] a) K. L. Dunbar, D. H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 2017,
117, 5521–5577; b) J. Franke, C. Hertweck, Cell Chem. Biol. 2016, 23,
1179–1192; c) W. Yang, D. G. Drueckhammer, J. Am. Chem. Soc. 2001,
123, 11004–11009; d) C. de Duve, The Molecular Origins of Life 1998,
219–236.
[16] a) J. Guang, A. J. Larson, J. C. G. Zhao, Adv. Synth. Catal. 2015, 357, 523–
529; b) K. Yan, D. Yang, W. Wei, J. Zhao, Y. Shuai, L. Tian, H. Wang, Org.
Biomol. Chem. 2015, 13, 7323–7330.
[17] a) Y. R. Liang, Q. Wu, X. F. Lin, The Chemical Record 2017, 17, 90–121;
b) B. K. Liu, Q. Wu, D. S. Lv, X. F. Lin, J. Biotechnol. 2011, 153, 111–115;
c) B. K. Liu, Q. Wu, J. M. Xu, X. F. Lin, Chem. Commun. 2007, 295–297.
[18] For reviews see: a) N. G. Schmidt, E. Eger, W. Kroutil, ACS Catal. 2016, 6,
4286–4311; b) K. Faber, W. D. Fessner, N. J. Turner, Biocatalysis in
Organic Synthesis. Science of Synthesis., Vol. 1–3, Thieme, Stuttgart, 2015;
c) K. Fesko, M. Gruber-Khadjawi, ChemCatChem 2013, 5, 1248–1272; M.
Müller, Adv. Synth. Catal. 2012, 354, 3161–3174.
[19] a) S. Junker, R. Roldan, H.-J. Joosten, P. Clapés, W.-D. Fessner, Angew.
Chem. Int. Ed. 2018, 57, 10153–10157; b) G. A. Aleku, B. Nowicka, N. J.
Turner, ChemCatChem 2018, 10, 124–135; c) V. Laurent, E. Darii, A.
Aujon, M. Debacker, J.-L. Petit, V. Hélaine, T. Liptaj, M. Breza, A. Mariage,
L. Nauton, M. Traikia, M. Salanoubat, M. Lemaire, C. Guérard-Hélaine, V.
de Berardinis, Angew. Chem. Int. Ed. 2018, 57, 5467–5471; d) A.
Szekrenyi, X. Garrabou, T. Parella, J. Joglar, J. Bujons, P. Clapés, Nat.
Chem. 2015, 7, 724–729; e) J.-Y. van der Meer, H. Poddar, B.-J. Baas, Y.
Miao, M. Rahimi, A. Kunzendorf, R. van Merkerk, P. G. Tepper, E. M.
Geertsema, A.-M. W. H. Thunnissen, W. J. Quax, G. J. Poelarends, Nat.
Commun. 2016, 7, 10911; f) B. R. Lichman, E. D. Lamming, T. Pesnot,
J. M. Smith, H. C. Hailes, J. M. Ward, Green Chem. 2015, 17, 852–855
This study was financed by the Austrian Science Fund (FWF) Lise
Meitner Fellowship grant M 2172-B21. NGS was financed by the
Austrian FFG, BMWFJ, BMVIT, SFG, Standortagentur Tirol and ZIT
through the Austrian FFG-COMET-Funding Program.
Conflict of Interest
The authors declare no conflict of interest.
Keywords: Friedel-Crafts reaction · thioesters · acyltransferase ·
acylation · CÀ C bond formation
[1] a) Y. H. Lee, B. Morandi, Nat. Chem. 2018, 10, 116–117; b) Z. Sadiq, M.
Iqbal, E. A. Hussain, S. Naz, J. Mol. Liq. 2018, 255, 26–42; c) G. A. El-Hiti, K.
Smith, A. S. Hegazy, Curr. Org. Chem. 2015, 19, 585–598.
[2] a) W. Shi, W. J. Dan, J. J. Tang, Y. Zhang, T. Nandinsuren, A. L. Zhang,
J. M. Gao, Bioorg. Med. Chem. Lett. 2016, 26, 2156–2158; b) G. Yu, D. Kuo,
M. Shoham, R. Viswanathan, ACS Comb. Sci. 2013, 16, 85–91; c) F. A. A.
van Acker, J. A. Hageman, G. R. M. M. Haenen, W. J. F. van der Vijgh, A.
Bast, W. M. P. B. Menge, J. Med. Chem. 2000, 43, 3752–3760; d) M. D.
Hilton, W. J. Cain, Appl. Environ. Microbiol. 1990, 56, 623–627.
[3] F. Effenberger, G. Epple, Angew. Chem. Int. Ed. 1972, 11, 300–301.
[4] a) M. Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem. 2010, 6, 1–24;
b) G. Sartori, R. Maggi in Advances in Friedel-Crafts Acylation Reactions:
Catalytic and Green Processes, 1st Edition, CRC Press, Boca Raton, 2009,
pp. 9–18.
Manuscript received: November 14, 2018
Revised manuscript received: December 5, 2018
Version of record online: ■■■, ■■■■
ChemCatChem 2019, 11, 1–6
5
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA