Paper
Synchronous fluorescence spectroscopy studies. It is reported
NJC
2 X. J. Li, K. Zheng, L. D. Wang, Y. T. Li, Z. Y. Wu and
C. W. Yan, J. Inorg. Biochem., 2013, 128, 97–107.
3 R. K. Ameta, M. Singh and R. K. Kate, New J. Chem., 2013, 37,
1501–1508.
4 A. Tarushi, J. Kljun, I. Turel, A. A. Pantazaki, G. Psomas and
D. P. Kessissoqlou, New J. Chem., 2013, 37, 342–355.
5 G. Pratviel, J. Bernadou and B. Meunier, Adv. Inorg. Chem.,
1998, 45, 251–312.
6 H. T. Chifotides and K. R. Dunbar, Acc. Chem. Res., 2005, 38,
146–156.
7 V. G. Vaidyanathan and B. U. Nair, Dalton Trans., 2005,
2842–2848.
that synchronous fluorescence spectroscopy is frequently used to
characterize the interaction between the fluorescence probe and
49
proteins, because this technique can provide information about
the molecular environment in the vicinity of the fluorophore
50
molecules. The synchronous fluorescence spectroscopy involves
the simultaneous scanning of excitation and emission spectra on a
fluorimeter, while maintaining a fixed wavelength difference (Dl)
between them. When Dl is stabilized at 15 nm, the synchronous
fluorescence gives the characteristic information of tyrosine resi-
51
dues, whereas Dl of 60 nm indicates that of tryptophan residues.
The maximum emission wavelengths of tryptophan and tyrosine
residues are related to the polarity of their surroundings. When the
wavelengths change, it can be inferred that the protein conformation
is changed. From Fig. S4 (ESI†), it can be seen that upon addition of
8 L. F. Tan, F. Wang, H. Chao, Y. F. Zhou and C. Weng,
J. Inorg. Biochem., 2007, 101, 700–708.
9 L. N. Ji, X. H. Zou and J. G. Liu, Coord. Chem. Rev., 2001,
216–217, 513–536.
1
and 2, the maximum emission wavelength shows no shift when
Dl was equal to 15 nm. However, as seen from Fig. S5 (ESI†), the 10 A. Nori and J. Kopecek, Adv. Drug Delivery Rev., 2005, 57,
maximum emission wavelength represents obviously red shift when
609–636.
Dl was equal to 60 nm. The red shift indicates that the conformation 11 R. M. Burger, Chem. Rev., 1998, 98, 1153–1169.
of BSA was changed while the polarity around the tryptophan 12 M. Morshedi and H. Hadadzadeh, J. Fluoresc., 2013, 23,
52
residues increased, whereas the hydrophobicity decreased.
259–264.
1
1
3 T. W. Hambley, Dalton Trans., 2007, 4929–4937.
4 C. H. Ng, W. S. Wang, K. V. Chong, Y. F. Win, K. E. Neo,
H. B. Lee, S. L. San, R. Abd Rrhmand and W. K. Leonge,
Dalton Trans., 2013, 42, 10233–10243.
5 Y. Lu, Chem.–Eur. J., 2002, 8, 4588–4596.
6 J. K. Barton, A. T. Danishefsky and J. M. Goldberg, J. Am.
Chem. Soc., 1984, 106, 2172–2176.
7 B. M. Goldstein, J. K. Barton and H. M. Berman, Inorg.
Chem., 1986, 25, 842–847.
8 Y. J. Liu, C. H. Zeng, H. L. Huang, L. X. He and F. H. Wu,
Eur. J. Med. Chem., 2010, 45, 564–571.
Conclusion
In this work, we have synthesized and characterized two Cu(II)
polypyridyl complexes to study the selectivity and efficiency of
DNA recognized and cleaved by binuclear Cu(II) complexes. The
interaction of complexes with calf thymus DNA (CT-DNA) was
investigated by UV-visible and fluorescence emission spectro-
metry, as well as agarose gel electrophoresis. Results suggest
moderate intercalative binding mode between the complexes
and DNA. Both 1 and 2 exhibited effective oxygen DNA cleavage
1
1
1
1
1
2
2
2
2
2
2
9 Q. L. Zhang, J. G. Liu, H. Xu, H. Li, J. Z. Liu, H. Zhou,
L. H. Qu and L. N. Ji, Polyhedron, 2001, 20, 3049–3055.
0 S. Shi, J. Liu, J. Li, K. C. Zheng, C. P. Tan, L. M. Chen and
L. N. Ji, Dalton Trans., 2005, 2038–2046.
1 Y. X. Ma, L. Cao, T. Kawabata, T. Yoshino, B. B. Yang and
S. Okada, Free Radical Biol. Med., 1998, 25, 568–575.
2 S. Y. Tsang, S. C. Tam, I. Bremner and M. J. Burkitt, Biochem.
J., 1996, 317, 13–16.
2 2
activity in the absence of external agents such as H O . DNA
cleavage mechanism studies show that both 1 and 2 might be
capable of promoting DNA cleavage through oxidative DNA
damage pathways. According to the results obtained from
fluorescence spectrometry of BSA, we conclude that the fluores-
cence quenching of BSA by 1 is a dynamic quenching process
because Ksv increases with increasing temperature. UV absorp-
tion spectra show that 2 involves a combined process, in which
dynamic and static quenching mechanisms are concurrent. The
details of the binding mode, specific binding sites and energy
transfer upon BSA binding with complexes are not very clear at
present and further studies are currently in progress.
3 B. X. Huang and H. Y. Kim, J. Am. Soc. Mass Spectrom., 2004,
15, 1237–1247.
4 N. Shahabadi, M. Maghsudi, Z. Kiaani and M. Pourfoulad,
Food Chem., 2001, 124, 1063–1068.
5 Y. N. Hu, X. S. Shen, X. Y. Fang and S. S. Qu, J. Mol. Struct.,
2005, 738, 143–147.
Acknowledgements
26 R. A. Alderden, M. D. Hall and T. W. Hambley, J. Chem.
Educ., 2006, 83, 728.
The work was supported by the NSFC (China) (No. 21371135)
and the Key Program of Tianjin Municipal Natural Science
Foundation (China) (No. 13JCZDJC28200).
2
2
2
7 C. Marzano, A. Trevisan, L. Giovagnini and D. Fregona,
Toxicol. In Vitro, 2002, 16, 413–419.
8 A. I. Matesanz, C. Hern ´a ndez, A. Rodr ´ı guez and P. Souza,
Dalton Trans., 2011, 40, 5738–5745.
9 C. L. Liu, M. Wang, T. L. Zhang and H. Z. Zhe, Coord. Chem.
Rev., 2004, 248, 147–168.
References
1
K. E. Erkkila, D. T. Odom and J. K. Barton, Chem. Rev., 1999, 30 H. Xu, K. C. Zheng, Y. Chen, Y. Z. Li, L. J. Lin, H. Li,
9, 2777–2795.
P. X. Zhang and L. N. Ji, Dalton Trans., 2003, 2260–2268.
9
964 | New J. Chem., 2014, 38, 955--965
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014