Journal of the American Chemical Society
Page 4 of 6
(pathway in Fig. 5C), the energy of the resulted 5M1P structure
assemblies from AIE-active building blocks. In addition, this
1
2
3
4
5
6
7
8
would be 58.8 kJ mol−1 higher than that of (6M)-1, and the energy
barrier from (6M)-1 to 5M1P is much larger than that in the reverse
direction. Therefore, when one TPE face in (6M)-1 was flipped, it
will easily flip back to the original (6M)-1 structure. Furthermore,
the complete interconversion from (6M)-1 to (6P)-1 involves the
flipping of all 24 phenyl rings (Fig. 5D). The energy barrier of this
pathway was calculated to be 224.9 kJ mol−1, thus explaining the
remarkable stability of (6M)-1 against racemization.
study provides a strategy to construct chiral cages by the rational
design through graph theory. The mathematic method based on
permutation groups is suitable for the analysis of all kinds of
polyhedra incorporating different kinds of faces or vertices, and
it will become more and more important as the complexity of the
research objects increases.
Acknowledgement The authors thank Stephen Z.D. Cheng,
He Tian, Xin Xu, Yiqin Gao, Peter J. Stang, E.W. (Bert) Meijer,
Wei Zhang, Minghua Liu, Benzhong Tang, Rongrong Hu, Hui
Zhang and Cheng Wang for discussions. We also thank Xiao Tang,
Kai Wu, Jijun Jiang, Lin Shi and Zhiyong Tang for assistance
in experiments. This work is supported by the 973 Program
(No.015CB856500), the NSFC (Nos. 21722304, 91427304,
21573181, 91227111 and 21102120) and the Fundamental
Research Funds for the Central Universities (No.0720160050)
of China.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Supporting Information Available: The Supporting Information
includes experimental procedures and data, graph theory analysis,
Figures S1–15 and Table S1. This material is available free of charge
References
Figure 5. DFTB+ calculations of the phenyl flipping in TPE monomer
and (6M)-1. (A), Potential energy surfaces of the different pathways to
flip the phenyl rings in TPE and (6M)-1. (B), Pathway to synchronously
flip the four phenyl rings of lowest energy structure of (M)-TPE to its
mirror-image (P)-TPE by increasing the CPh-CPh-C=C dihedral angle from
42.5◦ to 137.5◦. (C), Pathway to synchronously flip the four phenyl rings
on the top face of (6M)-1 with the TPE units on other faces fixed. (D),
Pathway to synchronously flip the 24 phenyl rings in (6M)-1 to its mirror-
image (6P)-1.
(1) Brutschy, M.; Schneider, M. W.; Mastalerz, M.; Waldvogel, S. R. Adv.
Mater. 2012, 24, 6049–6052.
(2) Zhang, M.; Saha, M. L.; Wang, M.; Zhou, Z.; Song, B.; Lu, C.; Yan, X.;
Li, X.; Huang, F.; Yin, S.; Stang, P. J. J. Am. Chem. Soc. 2017, 139, 5067–
5074.
(3) Chen, L.; Reiss, P. S.; Chong, S. Y.; Holden, D.; Jelfs, K. E.; Hasell, T.;
Little, M. A.; Kewley, A.; Briggs, M. E.; Stephenson, A.; Thomas, K. M.;
Armstrong, J. A.; Bell, J.; Busto, J.; Noel, R.; Liu, J.; Strachan, D. M.;
Thallapally, P. K.; Cooper, A. I. Nat. Mater. 2014, 13, 954–960.
(4) Mitra, T.; Jelfs, K. E.; Schmidtmann, M.; Ahmed, A.; Chong, S. Y.;
Adams, D. J.; Cooper, A. I. Nat. Chem. 2013, 5, 276–281.
(5) Xuan, W.; Zhang, M.; Liu, Y.; Chen, Z.; Cui, Y. J. Am. Chem. Soc. 2012,
134, 6904–6907.
In addition, DFTB+ calculations showed that every imine bond
followed the flipping of its attached phenyl ring and kept in the
same plane of the phenyl ring during the flipping of TPE faces (Fig.
S11). This suggests that the strong conjugation between the imine
bonds and the attached phenyl rings also contributes to high energy
barrier of the interconversion of FRCs. Therefore, the cooperativity
in the six TPE faces and the conjugation between imine bonds and
phenyl rings work together to realized the restriction of flipping in
FRCs and thus to generate the emergent chirality and fluorescence.
We have constructed a series of cubic cages through a 24-
fold imine condensation of six ETTBA molecules as faces and
eight TREN molecules as bridging vertices. The ETTBA and
TREN precursors show neither chirality nor fluorescence activity
in the solution state, nevertheless, graph theory suggests that
various chiral cubes can be formed if the P and M configurations
of TPE units can be fixed in cages. Based on the chiral-
HPLC, single crystal X-ray and CD analyses, we indeed found
four chiral cubes, and their emergent chirality is originated
from the complex arrangements of TPE faces with different
orientational and rotational configurations as suggested by graph
theory. The chirality of cubes in solution is in accord with their
crystal structures and is remarkably stable against racemization,
suggesting the intramolecular flipping of the TPE faces are
extremely restricted in solution. Such restriction of the TPE faces
also leads to the strong fluorescence and CPL activities of the
cubes. Theoretical calculations reveal that the conjugation between
imine bonds and phenyl rings is important to the restriction of TPE
flipping in large cages. As such, we have constructed a series of
cubic cages with stable chirality and strong fluorescence, providing
great potential for chiral sensors and luminescent materials. The
method we used to restrict the intramolecular flipping of TPE units
by the conjugation between imine bonds and phenyl rings might
facilitate the further design of cages and other supramolecular
(6) Yoshizawa, M.; Tamura, M.; Fujita, M. Science 2006, 312, 251–254.
(7) He, Q.-T.; Li, X.-P.; Chen, L.-F.; Zhang, L.; Wang, W.; Su, C.-Y. ACS
Catalysis 2012, 3, 1–9.
(8) Zhao, C.; Sun, Q.-F.; Hart-Cooper, W. M.; DiPasquale, A. G.; Toste, F. D.;
Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2013, 135, 18802–
18805.
(9) Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001–7045.
(10) Zarra, S.; Wood, D. M.; Roberts, D. A.; Nitschke, J. R. Chem. Soc. Rev.
2015, 44, 419–432.
(11) Chakraborty, S.; Hong, W.; Endres, K. J.; Xie, T.-Z.; Wojtas, L.;
Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. J. Am. Chem. Soc.
2017, 139, 3012–3020.
(12) Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D.
Nat. Chem. 2016, 8, 231–236.
(13) Argent, S. P.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.;
Ward, M. D. Chem. Commun. 2005, 4647–4649.
(14) Liu, Y.; Hu, C.; Comotti, A.; Ward, M. D. Science 2011, 333, 436–440.
(15) Ajami, D.; Liu, L.; Rebek Jr, J. Chem. Soc. Rev. 2015, 44, 490–499.
(16) Yang, D.; Zhao, J.; Yu, L.; Lin, X.; Zhang, W.; Ma, H.; Gogoll, A.;
Zhang, Z.; Wang, Y.; Yang, X.-J.; Wu, B. J. Am. Chem. Soc. 2017, 139,
5946–5951.
(17) Zhang, G.; Mastalerz, M. Chem. Soc. Rev. 2014, 43, 1934–1947.
(18) Jin, Y.; Wang, Q.; Taynton, P.; Zhang, W. Acc. Chem. Res. 2014, 47, 1575–
1586.
(19) Xu, D.; Warmuth, R. J. Am. Chem. Soc. 2008, 130, 7520–7521.
(20) Li, H.; Zhang, H.; Lammer, A. D.; Wang, M.; Li, X.; Lynch, V. M.;
Sessler, J. L. Nat. Chem. 2015, 7, 1003–1008.
(21) Ye, Y.; Cook, T. R.; Wang, S.-P.; Wu, J.; Li, S.; Stang, P. J. J. Am. Chem.
Soc. 2015, 137, 11896–11899.
(22) Jones, J. T. A.; Hasell, T.; Wu, X.; Bacsa, J.; Jelfs, K. E.; Schmidtmann, M.;
Chong, S. Y.; Adams, D. J.; Trewin, A.; Schiffman, F.; Cora, F.; Slater, B.;
Steiner, A.; Day, G. M.; Cooper, A. I. Nature 2011, 474, 367–371.
(23) Zhang, Y.; Crawley, M. R.; Hauke, C. E.; Friedman, A. E.; Cook, T. R.
Inorg. Chem. 2017, 56, 4258–4262.
(24) Wang, X.; Wang, Y.; Yang, H.; Fang, H.; Chen, R.; Sun, Y.; Zheng, N.;
Tan, K.; Lu, X.; Tian, Z.; Cao, X. Nat. Commun. 2016, 7, 12469–12476.
(25) Fujita, D.; Ueda, Y.; Sato, S.; Mizuno, N.; Kumasaka, T.; Fujita, M. Nature
2016, 540, 563–566.
(26) Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Nat. Chem. 2015, 7,
342–348.
(27) Ding, D.; Li, K.; Liu, B.; Tang, B. Z. Acc. Chem. Res. 2013, 46, 2441–
2453.
(28) Jin, Y.-J.; Kim, H.; Kim, J. J.; Heo, N. H.; Shin, J. W.; Teraguchi, M.;
Kaneko, T.; Aoki, T.; Kwak, G. Cryst. Growth Des. 2016, 16, 2804–2809.
ACS Paragon Plus Environment
4