M. Ohba et al. / Tetrahedron Letters 45 (2004) 6471–6474
6473
was performed in benzene (room temperature, 30min)
Acknowledgements
to give the oxazole–olefin 16 in 73% yield with high Z
selectivity. The geometry in 16 was determined on the
basis of the coupling constant (J=10.5Hz) between
two olefinic protons of the amine 17 obtained by depro-
tection of 16.
We are grateful to Prof. J. M. Cook (University of Wis-
consin–Milwaukee) for providing us with a sample and
spectral copies of synthetic norsuaveoline.
N
O
EtO2C
References and notes
3
NBoc
1
1. (a) Majumdar, S. P.; Potier, P.; Poisson, J. Tetrahedron
Lett. 1972, 1563–1566; (b) Majumdar, S. P.; Poisson, J.;
Potier, P. Phytochemistry 1973, 12, 1167–1169.
N
H
15A
2. Suaveoline (1) has been found in other species of Rauwol-
fia, see: (a) Iwu, M. M.; Court, W. E. Planta Med. 1977,
32, 88–99; (b) Akinloye, B. A.; Court, W. E. J. Ethno-
pharmacol. 1981, 4, 99–109; (c) Amer, M. M. A.; Court,
W. E. Planta Med. 1981, 43, 94–95; (d) Amer, M. A.;
Court, W. E. Phytochemistry 1981, 20, 2569–2573; (e)
Nasser, A. M. A. G.; Court, W. E. J. Ethnopharmacol.
1984, 11, 99–117; (f) Endreß, S.; Takayama, H.; Suda, S.;
Kitajima, M.; Aimi, N.; Sakai, S.; Sto¨ckigt, J. Phytochem-
istry 1993, 32, 725–730; (g) Sheludko, Y.; Gerasimenko, I.;
Unger, M.; Kostenyuk, I.; Stoeckigt, J. Plant Cell Rep.
1999, 18, 911–918.
3. (a) Trudell, M. L.; Cook, J. M. J. Am. Chem. Soc. 1989,
111, 7504–7507; (b) Trudell, M. L.; Soerens, D.; Weber, R.
W.; Hutchins, L.; Grubisha, D.; Bennett, D.; Cook, J. M.
Tetrahedron 1992, 48, 1805–1822; (c) Gennet, D.; Michel,
P.; Rassat, A. Synthesis 2000, 447–451.
4. (a) Fu, X.; Cook, J. M. J. Am. Chem. Soc. 1992, 114,
6910–6912; (b) Fu, X.; Cook, J. M. J. Org. Chem. 1993,
58, 661–672; (c) Bailey, P. D.; McLay, N. R. J. Chem.
Soc., Perkin Trans. 1 1993, 441–449; (d) Bailey, P. D.;
Collier, I. D.; Hollinshead, S. P.; Moore, M. H.; Morgan,
K. M.; Smith, D. I.; Vernon, J. M. J. Chem. Soc.,
Perkin Trans. 1 1997, 1209–1214; (e) Bailey, P. D.;
Morgan, K. M.; Smith, D. I.; Vernon, J. M. J. Chem.
Soc., Perkin Trans. 1 2000, 3566–3577; (f) Bailey, P. D.;
Morgan, K. M. J. Chem. Soc., Perkin Trans. 1 2000,
3578–3583.
5. For the enantiospecific synthesis of norsuaveoline (2), see:
(a) Wang, T.; Yu, P.; Li, J.; Cook, J. M. Tetrahedron Lett.
1998, 39, 8009–8012; (b) Li, J.; Wang, T.; Yu, P.; Peterson,
A.; Weber, R.; Soerens, D.; Grubisha, D.; Bennett, D.;
Cook, J. M. J. Am. Chem. Soc. 1999, 121, 6998–7010.
6. (a) Amer, M. M. A.; Court, W. E. Planta Med.
1980(Suppl.), 8–12; (b) Nasser, A. M. A. G.; Court, W.
E. Phytochemistry 1983, 22, 2297–2300.
Having succeeded in the synthesis of the oxazole–olefin
16, we set out to explore its intramolecular Diels–Alder
reaction. After considerable experimentation, we found
that the best result was obtained by treatment of 16 in
boiling xylene in the presence of 1,5-diazabicy-
clo[4.3.0]non-5-ene (DBN) for 9h; under these condi-
tions, the desired pyridine 18 [mp 230–232°C;12
25
½a ꢀ 6:0 (c 0.25, CHCl3)] was produced in 69% yield.
D
It seems likely that DBN might serve as a scavenger of
H2O at the high temperature employed and promote
the conversion of the initially formed Diels–Alder cyclo-
adduct into the pyridine 18.18 Finally, methylation of 18
with MeI in DMF (NaH, room temperature, 20min)
and subsequent deprotection of the resulting Na-methyl
derivative 20 with CF3CO2H (CH2Cl2, 0°C, 3h)
28
provided the first target compound 1 [½a ꢀ 1:4 (c
D
1
0.50, CHCl3)] in 80% yield from 18. The H and 13C
NMR (CDCl3), UV (EtOH), CD (cyclohexane), and
mass spectral data for the synthetic 1 proved to be virtu-
ally identical with those reported for natural suaveoline
[½aD0 ꢁ 2 (c 1, CHCl3)]1,2f and/or CookÕs synthetic sam-
25
ple [½a ꢀ 9:33 (c 0.30, CHCl3)].4a,b On the other hand,
D
removal of the Boc group in 18 with CF3CO2H
(CH2Cl2, 0°C, 3h) furnished the second target com-
30
pound 2 [mp 258–262°C; ½a þ 19:6 (c 0.50, CHCl3)]
D
in 88% yield. Although the specific rotation of 2 thus ob-
tained was in disagreement with that of norsuaveoline
27
[½a ꢀ 3:2 (c 1.00, CHCl3)] synthesized previously by
D
Cook and co-workers,5,19 they were virtually identical
with each other by comparison of the 1H and 13C
NMR (CDCl3) and CD (EtOH) spectra and TLC mobil-
ity (three solvent systems). In addition, we found that
7. (a) Batista, C. V. F.; Schripsema, J.; Verpoorte, R.; Rech,
S. B.; Henriques, A. T. Phytochemistry 1996, 41, 969–973;
(b) Rech, S. B.; Batista, C. V. F.; Schripsema, J.;
Verpoorte, R.; Henriques, A. T. Plant Cell, Tissue Organ
Cult. 1998, 54, 61–63.
8. (a) Ohba, M.; Kubo, H.; Fujii, T.; Ishibashi, H.; Sargent,
M. V.; Arbain, D. Tetrahedron Lett. 1997, 38, 6697–6700;
(b) Ohba, M.; Kubo, H.; Ishibashi, H. Tetrahedron 2000,
56, 7751–7761; (c) Ohba, M.; Izuta, R.; Shimizu, E.
Tetrahedron Lett. 2000, 41, 10251–10255; (d) Ohba, M.;
Izuta, R. Heterocycles 2001, 55, 823–826.
the spectral data and specific rotation for 19
27
D
tion of 2, matched those of Nb-benzylnorsuaveoline
[½a ꢀ 132:2 (c 0.50, CHCl3)], derived from benzyla-
27
[½a ꢀ 143:2 (c 1.00, CHCl3)] reported in the litera-
D
ture.5
In conclusion, a highly stereoselective total synthesis of
two Rauwolfia alkaloids, suaveoline (1), and norsuaveo-
line (2), has been accomplished via a route featuring an
efficient construction of the DE rings by the intramolec-
ular Diels–Alder reaction of the oxazole–olefin 16.
Further studies directed toward the synthesis of suaveo-
line-related alkaloids 3–5 using the aldehyde 7, a key
intermediate of our synthetic strategy, are in progress
in our laboratory.
9. For the intramolecular oxazole–olefin Diels–Alder reac-
tion, see: (a) Levin, J. I.; Weinreb, S. M. J. Am. Chem. Soc.
1983, 105, 1397–1398; (b) Sun, X.; Janvier, P.; Zhao, G.;
´
Bienayme, H.; Zhu, J. Org. Lett. 2001, 3, 877–880, and
references cited therein.
10. Ohba, M.; Kubo, H.; Seto, S.; Fujii, T.; Ishibashi, H.
Chem. Pharm. Bull. 1998, 46, 860–862.