Journal of Agricultural and Food Chemistry
Article
discovery of spinetoram. J. Comput.-Aided Mol. Des. 2008, 22, 393−
ACKNOWLEDGMENTS
■
4
We thank Cathy Young and James Gifford (Dow Agro-
Sciences) for assistance with the bioassays, Ricky Hunter (Dow
AgroSciences) for the insect photograph, and the journal’s
anonymous reviewers for their very helpful suggestions.
(18) Kornis, G. I. Avermectins and milbemycins. In Agrochemicals
from Natural Products; Godfery, C. R. A., Ed.; Dekker: New York,
1995; pp 215−255.
(19) Fischer, M. H. Structure-activity relationships of the avermectins
and milbemycins. In Phytochemicals for Pest Control; Hedin, P. A.,
Hollingworth, R. M., Masler, E. P., Miyamoto, J., Thompson, D. G.,
Eds.; American Chemical Society: Washington, DC, USA, 1997; pp
220−238.
(20) Mrozik, H.; Linn, B. O.; Eakola, P.; Lusi, A.; Matzuk, A.; Preiser,
F. A.; Ostlind, D. A.; Schaeffer, J. M.; Fisher, M. H. Synthesis and
(21) Pitterna, T. Chloride channel activators/new natural products:
avermectins and milbemycins. In Modern Crop Protection Compounds,
2nd ed.; Kramer, W., Schirmer, U., Jeschke, P., Witschel, M., Eds.;
ABBREVIATIONS USED
■
FL, fiducial limits; RH, relative humidity; TBAI, tetra-n-
butylammonium iodide
REFERENCES
■
(
1) Godfray, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.;
Lawrence, D.; Muir, J. F.; Pretty, J.; Robinson, S.; Thomas, S. M.;
Toulmin, C. Food security: the challenge of feeding 9 billion people.
Science 2010, 327, 812−818.
(
2) Tilman, D.; Balzer, C.; Hill, J.; Befort, B. L. Global food demand
and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci.
U. S. A. 2011, 108, 20260−20264.
(22) Zhao, J.-H.; Xu, X.-J.; Ji, M.-H.; Cheng, J.-L.; Zhu, G.-N. Design,
synthesis, and biological activities of milbemycin analogues. J. Agric.
Food Chem. 2011, 59, 4836−4850.
(
3) Popp, J.; Peto, K.; Nagy, J. Pesticide productivity and food
security, a review. Agron. Sustainable Dev. 2013, 33, 243−255.
(23) Xu, X.; Lai, S.; Ji, M.; Zhu, G.; Zhao, J. Synthesis,
characterization and insecticidal activity of milbemycin analogues.
Youji Huaxue 2012, 32, 1084−1092.
(
4) Whalon, M. E.; Mota-Sanchez, D.; Hollingworth, R. M. Analysis
of global pesticide resistance in arthropods. In Global Pesticide
Resistance in Arthropods; Whalon, M. E., Mota-Sanchez, D.,
Hollingworth, R. M., Eds.; CAB International: Cambridge, MA,
USA, 2008; pp 5−31.
(24) Sparks, T. C.; Dripps, J. E.; Watson, G. B.; Paroonagian, D.
Resistance and cross-resistance to the spinosyns − a review and
analysis. Pestic. Biochem. Physiol. 2012, 102, 1−10.
(25) Tietze, L. F.; Schutzenmeister, N.; Grube, A.; Scheffer, T.; Baag,
M. M.; Granitzka, M.; Stalke, D. Synthesis of spinosyn analogues for
modern crop protection. Eur. J. Org. Chem. 2012, 29, 5748−5756.
(26) Tietze, L. F.; Sietz, S.; Schutzenmeister, N.; Biller, S.; Hierold, J.;
Scheffer, T.; Baag, M. M. Selective glycosylation with the amino sugar
D-forosamine for synthesis of spinosyns and its analogues. Eur. J. Org.
Chem. 2013, 2013, 7305−7312.
(27) Anzeveno, P. B.; Green, F. R., III. Rhamnose replacement
analogs of spinosyn A. In Synthesis and Chemistry of Agrochemicals VI;
Baker, D. R., Fenyes, J. G., Lahm, G. P., Selby, T. P., Stevenson, T. M.,
Eds.; American Chemical Society: Washington, DC, USA, 2002; pp
262−276.
(28) Jeschke, P.; Velten, R.; Ebbinghaus-Kintscher, U.; Beck, M. E.;
Losel, P.; Malsam, O.; Eberz, G.; Mohrle, V.; Frode, R. Synthesis of 9-
keto-spinosyn derivatives for use in agriculture as pesticides. Bayer
CropScience, Germany, Patent, DE 2003-10301519, Jan 17, 2003; 85
pp.
(
5) Tabashnik, B. E.; Mota-Sanchez, D.; Whalon, M. E.;
Hollingworth, R. M.; Carriere, Y. Defining terms for proactive
management of resistance to Bt crops and pesticides. J. Econ. Entomol.
2
(
6) Sparks, T. C.; Nauen, R. IRAC: Mode of action classification and
insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121,
22−128.
7) Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current
challenges and trends in the discovery of agrochemicals. Science 2013,
8) Sparks, T. C. Insecticide discovery: an evaluation and analysis.
Pestic. Biochem. Physiol. 2013, 107, 8−17.
9) Cantrell, C. L.; Dayan, F. E.; Duke, S. O. Natural products as
sources for new pesticides. J. Nat. Prod. 2012, 75, 1231−1242.
10) Gerwick, B. C.; Sparks, T. C. Natural products for pest control:
an analysis of their role, value and future. Pest Manage. Sci. 2014, 70,
11) Godfrey, C. R. A., Ed. Agrochemicals from Natural Products;
Dekker: New York, 1995.
12) Rimando, A. M.; Duke, S. O. Natural products for pest
1
(
3
(
(
(
1
(
(29) Clark, M.; Cramer, R. D., III; von Opdenbosch, N. Validation of
the general purpose Tripos 5.2 force field. J. Comput. Chem. 1989, 10,
(
management. In Natural Products for Pest Management; American
Chemical Society: Washington, DC, USA, 2006; pp 2−21.
(30) Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital
(
13) Salgado, V. L.; Sparks, T. C. The spinosyns: chemistry,
biochemistry, mode of action, and resistance. In Insect Control:
Biological and Synthetic Agents; Gilbert, L. I., Gill, S. S., Eds.; Academic
Press: New York, 2010; pp 207−243.
(31) Purcel, W. P.; Singer, J. A. A brief review and table of
semiempirical parameters used in the Huckel molecular orbital
method. J. Chem. Eng. Data 1967, 12, 235−246.
(
14) Geng, C.; Watson, G. B.; Sparks, T. C. Nicotinic acetylcholine
(32) Finney, D. J. Probit Analysis, 3rd ed; Cambridge University
Press: Cambridge, UK, 1971.
receptors as spinosyn targets for insect pest management. In Target
Receptors in the Control of Insect Pests: Part I, Advances in Insect
Physiology; Cohen, E., Ed.; Academic Press: New York, 2013; Vol. 44,
pp 101−210.
(33) Sheehan, L. S.; Lill, R. E.; Wilkinson, B.; Sheridan, R. M.;
Vousden, W. A.; Kaja, A. L.; Crouse, G. D.; Gifford, J.; Graupner, P.;
Karr, L.; Lewer, L.; Sparks, T. C.; Leadlay, P. F.; Waldron, C.; Martin,
C. J. Engineering of the spinosyn PKS: directing starter unit
incorporation. J. Nat. Prod. 2006, 69, 1702−1710.
(34) Creemer, L. C.; Kirst, H. A.; Paschal, J. W. Conversion of
spinosyn A and spinosyn D to their respective 9- and 17-
pseudoaglycones and their aglycones. J. Antibiot. 1998, 51, 795−800.
(35) Crouse, G. D.; Sparks, T. C.; Schoonover, J.; Gifford, J. M.;
Bruce, T.; Worden, T. V.; Martynow, J. G. Recent advances in the
chemistry of the spinosyns. Pest Manage. Sci. 2001, 57, 177−185.
(36) Sparks, T. C.; Crouse, G. D.; Durst, G. Natural products as
insecticides: the biology, biochemistry and quantitative structure
(
15) Thompson, G. D.; Dutton, R.; Sparks, T. C. Spinosad − a case
study: an example from a natural products discovery program. Pest
Manage. Sci. 2000, 56, 696−702.
(
16) Dripps, J. E.; Boucher, R. E.; Chloridis, A.; Cleveland, C. B.;
DeAmicis, C. V.; Gomez, L. E.; Paroonagian, D. L.; Pavan, L. A.;
Sparks, T. C.; Watson, G. B. The spinosyn insecticides. In Green
Trends in Insect Control; Lopez, O., Fernadez-Bolanos, J. G., Eds.; RSC
Publishing: Cambridge, UK, 2011; pp 163−212.
(
17) Sparks, T. C.; Crouse, G. D.; Dripps, J. E.; Anzeveno, P.;
Martynow, J.; Gifford, J. Artificial neural network-based QSAR and the
5
576
J. Agric. Food Chem. 2015, 63, 5571−5577