3
0-35
+
trospray ionization (ESI),
ionization (MALDI).
and matrix-assisted laser desorption/
These techniques typically yield infor-
intermediate [C
4
H
5
N
2
] at m/z 81, which loses HCN to form the
3
6-38
+
(1-methyleneimino)-1-ethenylium (MIE, CH
m/z 54.46 MIE in turn reacts with carbon-carbon double bonds
in FAMEs to form a covalent adduct ion appearing at 54 mass
units greater than that of the parent FAME, [M + 54] . Isolation
2 2
dCdN dCH ) ion at
mation about the molecular weight, fatty acid carbon number,
degree of unsaturation, and regiospecificity, but do not reveal the
arrangement of double bonds, which is the single most significant
structural property determining biological activity. A rapid, in-
strumental method for analysis of the double bond position in
TAGs is required.
+
+
and collisional activation of the [M + 54] ions yields fragments
corresponding to bond cleavage at specific locations in FAMEs.
The two ions that are normally of greatest abundance contain
either the R- or ω-carbon atoms and have masses unique to the
positions of double bonds within the FAME. Early studies of this
reaction included double bond identification in monoene hydro-
Conventional approaches for determination of the double bond
position by mass spectrometry rely on an initial hydrolysis of fatty
acyl groups, followed by chemical derivatization to enhance the
yield of diagnostically useful fragment ions obtained upon colli-
sional dissociation. Single acyl groups are esterified with charge-
localizing groups such as 4,4-dimethyloxalone (DMOX) or picoli-
nyl esters with subsequent analysis of charge-remote fragmentation.
The disadvantages of these methods have been discussed39 and
include the need for derivatization chemistry prior to analysis and
generally low sensitivity.
carbons and polyene alcohols,4 as well as monoene FAMEs.
7,48
49
TAGs are neutral molecules that can be analyzed by high-
temperature gas chromatography (GC) but for lipidomics applica-
tions are more commonly analyzed from a liquid by ESI. ESI is a
soft ionization technique which excels at analysis of charged or
high proton affinity compounds. To adapt CACI to the liquid phase,
we investigated the use of APCI as a source for reagent ions for
covalent adduct formation with TAGs, similar to our gas-phase
FAME analysis. Conditions were first developed to produce
adequate levels of reagent ions for derivatization of neutral TAGs,
under conditions we refer to as atmospheric pressure covalent
adduct chemical ionization (APCACI). TAGs of the forms ABB
and BAB (sn-1,2,3) were synthesized, where B is a monoene or
diene fatty acyl group of one of several isomers and A is palmitic
acid (hexadecanoic acid, 16:0). The resulting ions were character-
ized for their ability to form diagnostically useful fragments by
single-, double-, and triple-stage mass spectrometry.
3
9-42
In previous work,
we have demonstrated a rapid technique
for double bond localization in fatty acid methyl esters (FAMEs)
based on chemical derivatization of neutral FAMEs in the gas
phase, which we recently termed “covalent adduct chemical
ionization” (CACI).4 The CI mass spectrum of CH
internal ionization ion trap includes ions at m/z 40 and 42, formed
by loss or gain of H, and an ion at m/z 54.
demonstrated that an ion/molecule reaction between [C
m/z 40) and neutral CH
3
3
CN in a 3D
4
4,45
It has been
+
2 2
H N]
(
3
CN results in the formation of an
(
21) Stroobant, V.; Rozenberg, R.; Bouabsa, E. M.; Deffense, E.; Dehoffmann,
E. J. Am. Soc. Mass Spectrom. 1995, 6, 498-506.
22) Anderson, M. A.; Collier, L.; Dilliplane, R.; Ayorinde, F. O. J. Am. Oil Chem.
EXPERIMENTAL SECTION
(
Chemicals. The following fatty acids were purchased from
Soc. 1993, 70, 905-908.
(
(
23) Lehmann, W. D.; Kessler, M. Biomed. Mass Spectrom. 1983, 10, 220-226.
24) Evans, N.; Games, D. E.; Harwood, J. L.; Jackson, A. H. Biochem. Soc. Trans.
Matreya, Inc. (Pleasant Gap, PA): 9c-octadecenoic acid (oleic
acid), 9c,12c-octadecadienoic acid, 9c,11t-octadecadienoic acid
1
974, 2, 1091-1093.
25) Sundin, P.; Larsson, P.; Wesen, C.; Odham, G. Biol. Mass Spectrom. 1992,
1, 633-641.
(rumenic acid), and 10t,12c-octadecadienoic acid. 11c-Octadecenoic
(
2
acid (vaccenic acid), 13c-octadecenoic acid, 1,3-dicyclohexylcar-
bodiimide, and 4-(dimethylamino)pyridine were purchased from
Sigma Chemical Co. (St. Louis, MO). 1-Palmitin and 2-palmitin
were obtained from Research Plus, Inc. (Manasquan, NJ). Thin
layer chromatography (TLC) plates were obtained from Analtech
Inc. (Newark, DE). The following TAGs were synthesized by
esterification of fatty acids with sn-1- or sn-2-monopalmitoylygly-
(
(
(
26) Kim, H. Y.; Salem, N. Anal. Chem. 1987, 59, 722-726.
27) Lamberto, M.; Saitta, M. J. Am. Oil Chem. Soc. 1995, 72, 867-871.
28) Hori, M.; Sahashi, Y.; Koike, S.; Yamaoka, R.; Sato, M. Anal. Sci. 1994,
1
0, 719-724.
(
29) Evans, C.; Traldi, P.; Bambagiottialberti, M.; Giannellini, V.; Coran, S. A.;
Vincieri, F. F. Biol. Mass Spectrom. 1991, 20, 351-356.
(
(
(
(
(
30) Duffin, K. L.; Henion, J. D.; Shieh, J. J. Anal. Chem. 1991, 63, 1781-1788.
31) Cheng, C. F.; Gross, M. L. Anal. Chem. 1998, 70, 4417-4426.
32) Hsu, F. F.; Turk, J. J. Am. Soc. Mass Spectrom. 1999, 10, 587-599.
33) Hvattum, E. Rapid Commun. Mass Spectrom. 2001, 15, 187-190.
34) Fard, A. M.; Turner, A. G.; Willett, G. D. Aust. J. Chem. 2003, 56, 499-
50
cerol as reported elsewhere: rac-glyceryl-1,3-9c-octadecenoate-
2-palmitate [(9-18:1/16:0/9-18:1)-TAG], rac-glyceryl-1-palmitate-2,3-
5
08.
9c-octadecenoate [(16:0/9-18:1/9-18:1)-TAG], rac-glyceryl-1,3-11c-
octadecenoate-2-palmitate [(11-18:1/16:0/11-18:1)-TAG], rac-glyceryl-
(
(
(
(
(
35) Segall, S. D.; Artz, W. E.; Raslan, D. S.; Ferraz, V. P.; Takahashi, J. A. Food
Res. Int. 2005, 38, 167-174.
36) Asbury, G. R.; Al-Saad, K.; Siems, W. F.; Hannan, R. M.; Hill, H. H. J. Am.
Soc. Mass Spectrom. 1999, 10, 983-991.
1
-palmitate-2,3-11c-octadecenoate [(11-18:1/16:0/11-18:1)-TAG],
rac-glyceryl-1,3-13c-octadecenoate-2-palmitate [(13-18:1/16:0/13-
37) Robins, C.; Limbach, P. A. Rapid Commun. Mass Spectrom. 2003, 17, 2839-
1
1
8:1)-TAG], rac-glyceryl-1-palmitate-2,3-13c-octadecenoate [(16:0/
3-18:1/13-18:1)-TAG], rac-glyceryl-1,3-9c,11t-octadecadienoate-
2
845.
38) Calvano, C. D.; Palmisano, F.; Zambonin, C. G. Rapid Commun. Mass
Spectrom. 2005, 19, 1315-1320.
39) Michaud, A. L.; Diau, G. Y.; Abril, R.; Brenna, J. T. Anal. Biochem. 2002,
2-palmitate [(9,11-18:2/16:0/9,11-18:2)-TAG], rac-glyceryl-1-palmi-
tate-2,3-9c,11t-octadecadienoate [(9,11-18:2/16:0/9,11-18:2)-TAG],
rac-glyceryl-1,3-10t,12c-octadecadienoate-2-palmitate [(10,12-18:2/
16:0/10,12-18:2)-TAG], rac-glyceryl-1-palmitate-2,3-10t,12c-octadeca-
3
07, 348-360.
(
(
40) Van Pelt, C. K.; Brenna, J. T. Anal. Chem. 1999, 71, 1981-1989.
41) Van Pelt, C. K.; Carpenter, B. K.; Brenna, J. T. J. Am. Soc. Mass Spectrom.
1
999, 10, 1253-1262.
(
42) Michaud, A. L.; Yurawecz, M. P.; Delmonte, P.; Corl, B. A.; Bauman, D. E.;
(46) Oldham, N. J. Rapid Commun. Mass Spectrom. 1999, 13, 1694-1698.
(47) Moneti, G.; Pieraccini, G.; Dani, F. R.; Turillazzi, S.; Favretto, D.; Traldi, P.
J. Mass Spectrom. 1997, 32, 1371-1373.
(48) Moneti, G.; Pieraccini, G.; Favretto, D.; Traldi, P. J. Mass Spectrom. 1999,
34, 1354-1360.
Brenna, J. T. Anal. Chem. 2003, 75, 4925-4930.
(
43) Lawrence, P.; Brenna, J. T. Anal. Chem. 2006, 78, 1312-1317.
44) Moneti, G.; Pieraccini, G.; Dani, F. R.; Catinella, S.; Traldi, P. Rapid Commun.
Mass Spectrom. 1996, 10, 167-170.
(
(
45) Moneti, G.; Pieraccini, G.; Favretto, D.; Traldi, P. J. Mass Spectrom. 1998,
(49) Oldham, N. J. S. A. Rapid Commun. Mass Spectrom. 1999, 13, 331-336.
(50) Jie, M.; Lam, C. C.; Yan, B. F. Y. J. Chem. Res., Synop. 1993, 141-141.
3
3, 1148-1149.
2526 Analytical Chemistry, Vol. 79, No. 6, March 15, 2007