Ulldemolins, J. A. Sharp, C. Cartmell, P. Ca
́
12. (a) F. Bartoccini, S. Venturi, M. Retini, M. Mari, G. Piersanti. J.
Org. Chem. 2019, 84, 8027−8034; (b) F. Bartoccini, S. Bartolucci,
M. Mari, G. Piersanti. Org. Biom. Chem. 2016, 14, 10095–10100;
(c) F. Bartoccini, M. Casoli, M. Mari, G. Piersanti. J. Org. Chem.
2014, 79, 3255−3259; (d) M. Mari, F. Bartoccini, G. Piersanti. J.
Org. Chem. 2013, 78, 7727–7734; (e) S. Bartolucci, F. Bartoccini,
M. Righi, G. Piersanti. Org. Lett. 2012, 14, 600–603.
Chem.Commun. 2019, 55, 13653–13656; (q) H. Gruß, N.Sewald.
(a) W. Zhong, J. P. Gallivan, Y. Zhang, L. Li, H. A. Lester, D. A.
Dougherty. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 12088– 12093;
(b) J. C. Ma, D. A. Dougherty. Chem. Rev. 1997, 97, 1303-1324.
A. Tin, G. Nadkarni, A. M. Evans, C. A. Winkler, E. Bottinger, C.
M. Rebholz, M. J. Sarnak, L. A. Inker, A. S. Levey, M. S.
Lipkowitz, L. J. Appel, D. E. Arking, J. Coresh, M. E. Grams. J.
Am. Soc. Nephrol. 2018, 29, 1939–1947.
(a) C.-H., Chen, S. Genapathy, P. M. Fischer, W. C. Chan, Org.
Biomol. Chem. 2014, 12, 9764–9768; (b) S. Y. Wang, J. Zhao, H.
D. Que. Chem. Nat. Compd. 2019, 55, 499–501.
(a) C. R. Hurt, R. Lin, H. Rapoport. J. Org. Chem. 1999, 64, 225-
233; (b) B. D. Zlatopolskiy, O. J. Zischler, O. D. Schäfer, E. A.
Urusova, M. Guliyev, O. Bannykh, H. Endepols, B. Neumaier, J.
Med. Chem. 2018, 61, 189–206;
(a) Y. Yokoyama, K. Osanai, M. Mitsuhashi, K. Kondo, Y.
Murakami. Heterocycles 2001, 55, 653–659; (b) G. Blaser, J. M.
Sanderson, A. S. Batsanov, J. A. K. Howard. Tetrahedron Lett.
2008, 49, 2795–2798; (c) Y. Konda-Yamada, C. Okada, K.
Yoshida, Y. Umeda, S. Arima, N.Sato, T. Kai, H. Takayanagi, Y.
Harigaya. Tetrahedron 2002, 58, 7851-7861; (d) K. H. Shaker, M.
Goehl, T. Mueller, K. Seifert. Chem. Biodivers. 2015, 12, 1746–
1755.
4.
5.
13. J. Wolfard, J. Xu, H. Zhang, C. K. Chung. Org. Lett. 2018, 20,
5431−5434.
14. Cyclic sulfamidates are considered versatile precursors in organic
synthesis for the preparation of various compounds of biological
interest. For an excellent review, see: (a) Nasir Baig, R. B.;
Nadagouda, M. N.; Varma, R. S. Aldrichimica Acta 2015, 48, 71–
79; For selective examples: (b) S. De Luca, G. Digilio, V.
Verdoliva, P. Tovillas, G. Jiménez-Osés, J. M. Peregrina J. Org.
Chem. 2019, 84, 22, 14957-14964; (c) D. Štepec, G. Tavčar, M.
Ponikvar-Svet. J. Fluor. Chem. 2019, 217, 22–28; (d) S. De Luca,
G. Digilio, V. Verdoliva, M. Saviano, V. Menchise, P. Tovllas, G.
6.
7.
8.
Jiménez-Osés, J. M. Peregrina. Org. Lett. 2018, 20, 7478−7482; (e)
N. Baig, R. Baig, R. N. Chandrakala, V. Sai Sudhir, S.
Chandrasekaran. J. Org. Chem. 2010, 75, 2910–2921; (f) D. W.
Widlicka, A. Gontcharov, R. Mehta, D. J. Pedro, R. North. Org.
Process Res. Dev. 2019, 239, 1970-1978; (g) P. Arigala, V. S. Sadu,
I. Hwang, J. Hwang, C. Kim, K. Lee. Adv. Synth. Catal. 2015, 357,
2027-2032; (h) J. F. Bower, P. Szeto, T. Gallagher. Org. Lett. 2007,
9, 4909– 4912; (i) T. A. Moss, B. Alonso, D. R. Fenwick, D. J.
Dixon. Angew. Chem., Int. Ed. 2010, 49, 568– 571; (j) N. Mazo, I.
García-González, C. D. Navo, F. Corzana, G. Jiménez-Osés, A.
Avenoza, J. H. Busto, J. M. Peregrina. Org. Lett. 2015, 17, 5804–
5807; (k) L. Wei, W. D. Lubell. Can. J. Chem. 2001, 79, 94–104.
(l) P. Hebeisen, U. Weiss, A. Alker, A. Staempfli. Tetrahedron Lett.
2011, 52, 5229–5233.
9.
Y. Yokoyama, H. Hikawa, M. Mitsuhashi, A. Uyama, Y. Hiroki, Y.
Eur. J. Org. Chem. 2004, 6, 1244–1253.
10. (a) C. Schnepel, H. Minges, M. Frese, N. Sewald. Angew. Chem.
Int. Ed. 2016, 55, 14159–14163; (b) A. Lang, S. Polnick, T. Nicke,
P. William, E. P. Patallo, J. H.; Naismith, K.-H. van Pee. Angew.
Chem. Int. Ed. 2011, 50, 2951-2953; (c) S. Zehner, A. Kotzsch, B.
Bister, R. D. Süssmuth, C. Mendez, J. A. Salas, K.-H. van Pee. A.
Chem. Biol. 2005, 12, 445-452; (d) M. Frese, N. Sewald. Angew.
Chem. Int. Ed. 2015, 54, 298–301; (e) B. R. K. Menon, J. Latham,
M. S. Dunstan, E. Brandenburger, U. Klemstein, D. Leys, C.
Karthikeyan, M. F. Greaney, S. A. Shepherd, J. Micklefield. Org.
Biomol. Chem. 2016, 14, 9354-9361; (f) J. Zeng, J. Zhan.
Biotechnol. Lett. 2011, 33, 1607-1613; (g) J. T. Payne, M. C.
Andorfer, J. C. Angew. Chem. Int. Ed. 2013, 52, 5271–5274. For
example of fermentative process see:(h) K. H. Veldmann, S.
Dachwitz, J. M. Risse, J.-H. Lee, N. Sewald, V. F. Wendisch.
Front. Bioeng. Biotechnol. 2019, 7, 219.
11. (a) M. Winn, D. Francis, J. Micklefield. Angew. Chem. Int. Ed.
2018, 57, 6830–6833; (b) D. R. M. Smith, T. Willemse, D. S.
Gkotsi, W. Schepens, B. U. W. Maes, S. Ballet, R. J. M. Goss. Org.
Lett. 2014, 16, 2622–2625. (c) R. J. M. Goss, P. L. A. A Newill.
Chem. Commun. 2006, 47, 4924-4925. (d) J. Murciano-Calles, D.
K. Romney, S. Brinkmann-Chen, A. R.; Buller, F. H. Arnold.
Angew. Chem. Int. Ed. 2016, 55, 11577–11581 (e) M. Kaiser, M.
Groll, C. Renner, R. Huber, L. Moroder. Angew. Chem. Int. Ed.
2002, 41, 780–783. (f) D. K. Romney, J. Murciano-Calles, J. E.
Wehrmüller, F. H. Arnold. J. Am. Chem. Soc. 2017, 139,
10769−10776; (g) J. Yu, J. Li, X. Gao, S, Zeng, H. Zhang, J. Liu,
Q. Jiao. Eur. J. Org. Chem. 2019, 6618–6625.
15. T. Denoëla, A. Zervosena, T. Gerardsa, C. Lemairea, B. Jorisb, D.
Blanotc, A. Luxena. Bioorg. Med. Chem. 2014, 22, 4621–4628.
16. (a) C. Schnepel, I. Kemker, N. Sewald. ACS Catalysis 2019, 9,
1149-1158; (b) R. Fu, S. Mog So, A. J. Lough, J. Chin. Angew.
Chem. Int. Ed. 2020, 59, 4335-4339.
17. In the case of a phenyl group at the same position, product
formation was observed, with the yield comparable to those of the
other bromoderivatives.
18. H. Mei, J. Han, K. D. Klika, K. Izawa, T. Sato, N. A. Meanwell, V.
A. Soloshonok. Eur. J. Med. Chem. 2020, 186, 111826.
19. S. H. Ang, P. Krastel, S. Y. Leong, L. J. Tan, W. L. J. Wong, B. K.
S. Yeung, B. Zou PCT Int. Appl. (2009) WO 2009132921 A1.
20. T. Hudlicky, U. R. Kevin, J. F. Ghiviriga. J. Org. Chem. 2005, 70,
3490–3499.
21. a) I. Tirotta, N. L. Fifer, J. Eakins, C. A. Hutton. Tetrahedron Lett.
2013, 54, 618-620; (b) K. Sato, A. P. Kozikowski. Tetrahedron
Lett. 1989, 30, 4073-4076; (c) T. Nishikawa, S. Kajii, K. Wada, M.
Ishikawa, M. Isobe. Synthesis 2002, 12, 1658-1662; (c) T. Noji, K.
Okano, H. Tokuyama. Tetrahedron 2015, 71, 3833-3837.
Graphical Abstract
Highlights
Leave this area blank for abstract info.
General Synthesis of Unnatural 4-, 5-, 6-, and
7-Bromo-D-Tryptophans by Means of a Regioselective
Indole Alkylation
Francesca Bartoccini, Fabiola Fanini, Michele Retini and Giovanni Piersanti*
CO2H
NH2
O
O
S
C3-Alkylation
O
NBoc
+
N
N
Deprotection
X
H
X
H
CO2Me
X = Br, Cl, F