Letter
NJC
Table 3 Average% change fluorescence of polymers 8–11 with 70 mM
analyte 1a
Notes and references
1 R. M. Johnson, M. D. Ellis, C. A. Mullin and M. Frazier,
Apidologie, 2010, 41, 312.
Fluorescence modulation
particlea
Fluorescence modulation
polymera
Polymer
2 L. Anfossi, G. Giraudi, C. Tozzi, C. Giovanolli, C. Baggiani
and A. Vanni, Anal. Chim. Acta, 2004, 506, 87.
3 J. Lintelmann, A. Katayama, N. Kurihara, L. Shore and
A. Wenzel, Pure Appl. Chem., 2003, 75, 631.
4 F. Mangani, M. Maione and P. Palma, Food Sci. Technol.,
2000, 102, 517.
8
9
10
11
1.81
2.34
1.67
1.23
0.96
1.03
1.28
0.94
a
Fluorescence modulation calculated according to eqn (1); [Particles] =
1.25 Â 10À3 mg mLÀ1; [Polymers] = 1.25 Â 10À3 mg mLÀ1
.
5 V. Andreu and Y. Pico, TrAC, Trends Anal. Chem., 2004,
23, 772.
6 H. Shaikh, N. Memon, M. I. Bhanger, S. M. Nizamani and
A. Denizli, J. Chromatogr. A, 2014, 1337, 179.
7 M. Blazkova, P. Rauch and L. Fukal, Biosens. Bioelectron.,
2010, 25, 2122; R. Chandra Boro, J. Kaushal, Y. Nangia,
N. Wangoo, A. Bhasin and C. R. Suri, Analyst, 2011, 136, 2125.
8 B. Saute and R. Narayanan, J. Raman Spectrosc., 2013,
44, 1518.
9 R. Ben-Zur, H. Hake, S. Hassoon, V. Bulatov and I. Schechter,
Rev. Anal. Chem., 2011, 30, 123; D. J. DiScenza and M. Levine,
New J. Chem., 2016, 40, 789.
Fig. 9 Illustration of fluorescence emission of conjugated polymers in the
presence of 70 mM of analyte 1 with: (A) polymer 8 in nanoparticles;
(B) polymer 9 in nanoparticles; and (C) polymer 8 in free solution. The
black line represents the fluorescence emission of the polymer in the
presence of 0 mM analyte 1 and the red line represents the emission of
the polymer in the presence of 70 mM analyte 1.
10 A. Bavili Tabrizi and A. Abdollahi, Bull. Environ. Contam.
Toxicol., 2015, 95, 536.
11 E. Watanabe and K. Baba, J. Chromatogr. A, 2015, 1385, 35.
12 W. Li, Y. Wang, L. Huang, T. Wu, H. Hu and Y. Du,
Luminescence, 2015, 30, 872.
13 D. Gopalakrishnan and W. R. Dichtel, Chem. Mater., 2015,
27, 3813; J. Zheng and T. M. Swager, Adv. Polym. Sci., 2005,
177, 151; S. W. Thomas, G. D. Joly and T. M. Swager, Chem.
Rev., 2007, 107, 1339.
enhancements. In all cases, the fluorescence enhancements of the
nanoparticle solution were markedly higher than the enhancements
observed in the presence of the free polymer, which confirms the
importance of inter-polymer communication in enabling the highly
sensitive fluorescence changes to occur.
In summary, reported herein is the substantial fluorescence
enhancement of PFBO-derived nanoparticles and thin films
in the presence of aromatic organochlorine pesticides, and
marked class-specific fluorescence changes of PFBO-derived
nanoparticles in the presence of a variety of other small
molecule pesticides. These fluorescence responses have a
number of notable features, including: (a) a requirement for
polymer chain aggregation to enable efficient inter-polymer
exciton migration; (b) high levels of reversibility through the
introduction of iodine vapor; (c) a ‘turn-on’ rather than ‘turn-
off’ fluorescence signal, which has the potential to lead to
improved sensitivity in practical detection schemes; (d) low
limits of detection, which approach practical levels of concern;
and (e) general applicability for other fluorescent organic
polymers, including both commercially available and easily
synthesized polymers. Efforts towards developing practical
turn-on detection systems for aromatic pesticides based on
this research are currently in progress in our research labora-
tory, and results of these and other investigations will be
reported in due course.
14 D. Zhao and T. M. Swager, Macromolecules, 2005, 38, 9377.
15 Z. Tian, J. Yu, C. Wu, C. Szymanski and J. McNeill, Nanoscale,
2010, 2, 1999.
16 T. L. Andrew and T. M. Swager, J. Polym. Sci., Part B: Polym.
Phys., 2011, 49, 476.
17 T. Das, T. K. Paira, M. Biswas and T. K. Mandal, J. Phys.
Chem. C, 2015, 119, 4324.
18 J. Mori, Y. Miyashita, D. Oliveira, H. Kasai, H. Oikawa and
H. Nakanishi, J. Cryst. Growth, 2009, 311, 553.
19 J. Bouffard and T. M. Swager, Macromolecules, 2008, 41, 5559.
20 P. Kueseng, C. Thammakhet, P. Thavarungkul and
P. Kanatharana, Anal. Lett., 2011, 44, 787.
21 M. Shimizu, K. Mochida, M. Katoh and T. Hiyama, J. Phys.
Chem. C, 2010, 114, 10004.
22 Q. Zhou and T. M. Swager, J. Am. Chem. Soc., 1995, 117, 12593.
23 J.-J. Zhong, N. Liao, T. Ding, X. Ye and D.-H. Liu, J. Chromatogr.
A, 2015, 1406, 331.
24 K. Jaga and C. Dharmani, Int. J. Occup. Med. Environ. Health,
2003, 16, 7.
25 A. L. Graham, C. L. Carlson and P. L. Edmiston, Anal. Chem.,
2002, 74, 458.
26 World Health Organization International Agency for Research
on Cancer, IARC monographs on the evaluation of carcinogenic
risks to humans, Secretariat for the World Health Organization,
Lyon, 1991, vol. 53, pp. 179–250.
Acknowledgements
Funding for this research was provided by the University of Rhode
Island Chemistry Department start-up funds.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016