Page 5 of 6
Ple aDs ea l dt oo nn To rt a and sj ua sc tt imo na sr gins
Journal Name
ARTICLE
Table 2 Effect of the order of incubation on the results of vinylogous Friedel−Crafts alkylation reactions catalyzed by the [Cu(phen)(NO
3
)
2
]D O/ IL : m1 r0R . _1 0b p3 y9 _/ EC1 70 D4 CT _0b 0p 5y 33D
conjugate.
st
nd
a
b
c
Entry
1
incubation
2
incubation
-
Yield (%)
TON
ee (%)
n.d.
1
2
[Cu(phen)(NO
3
)
2
]
≤1
≤1
2+
Fe
[Cu(phen)(NO
3
)
2
]
]
57±14
23±5
14±2
6±1
72±14
78±2
2+
3
4
5
Cu(phen)(NO
3
)
2
]
Fe
[Cu(phen)(NO
33±5
13±2
11±3
2+
Zn
3
)
2
50±1
2+
[Cu(phen)(NO
3
)
2
]
Zn
5±1
50±13
3 2
Typical conditions: 2.2 mol% [Cu(phen)(NO ) ] (22 µM) loading with 1.3 eq LmrR_bpy conjugates (30 µM), 1 mM of substrates 1 and 2 in 20 mM MOPS buffer pH 7.0, 500
mM NaCl, for 72 h at 4 °C. All the results listed correspond to the average of two independent experiments, each carried out in duplicate. Errors are listed as standard
a
b
deviations.. Yields were determined by HPLC and using 2-phenylquinoline as internal standard. Turnover numbers (TON) were determined by dividing the concentration
c
of product by the catalyst concentration. For yields below 5% ee’s were not determined.
1
0 P. K. Madoori, H. Agustiandari, A. J. M. Driessen and A.-M. W. H.
Thunnissen, EMBO J., 2009, 28, 156–166.
Conclusions
11 J. Bos, F. Fusetti, A. J. M. Driessen and G. Roelfes, Angew. Chem.
Int. Ed., 2012, 51, 7472–7475.
The results presented here show that we successfully designed,
synthesized and characterized a metal ion regulated artificial
metalloenzyme. By combining a regulatory site to bind an effector
metal ion and an active site to recruit a catalytically active metal
complex in the LmrR scaffold, the activity of the artificial
metalloenzyme (LmrR_E104C_bpy) for a vinylogous Friedel−Crafts
1
1
1
1
2 J. Bos, A. García-Herraiz and G. Roelfes, Chem. Sci., 2013, 4,
578–3582.
3 I. Drienovská, A. Rioz-Martínez, A. Draksharapu and G. Roelfes,
Chem. Sci., 2014, 6, 770–776.
4 J. Bos, W. R. Browne, A. J. M. Driessen and G. Roelfes, J. Am.
Chem. Soc., 2015, 137, 9796–9799.
5 G. Atkinson and J. E. Bauman, Inorg. Chem., 1962, 1, 900–904.
3
2+
alkylation could be regulated by incubation with Fe ions.
Reminiscent of allosteric regulation in natural enzymes, we
2+
2+
16 R. H. Holyer, C. D. Hubbard, S. F. A. Kettle and R. G. Wilkins,
achieved selective activation by Fe but not by Zn , taking
advantage of the different coordination properties of these
transition metals. This study represents the first example of a metal
ion regulated artificial metalloenzyme and presents a significant
advance toward controlling the activity of designer enzymes in
hybrid bio-synthetic pathways.
Inorg. Chem., 1965, 4, 929–935.
1
1
7 P. Krumholz, J. Am. Chem. Soc., 1949, 71, 3654–3656.
8 R. M. Franzini, R. M. Watson, G. K. Patra, R. M. Breece, D. L.
Tierney, M. P. Hendrich and C. Achim, Inorg. Chem., 2006, 45,
9
798–9811.
9 M. Kurihara, K. Ozutsumi and T. Kawashima, J. Solut. Chem., 24,
19–734.
1
2
7
0 A. Basnet, P. Thapa, R. Karki, Y. Na, Y. Jahng, B.-S. Jeong, T. C.
Jeong, C.-S. Lee and E.-S. Lee, Bioorg. Med. Chem., 2007, 15,
4351–4359.
Acknowledgements
This work was supported by European Research Council (ERC
Starting Grant 280010). Financial support from the Ministry of 21 R. Ballardini, V. Balzani, M. Clemente-León, A. Credi, M. T.
Education, Culture, and Science (Gravitation Program No.
24.001.035) is gratefully acknowledged. The authors thank I.
Gandolfi, E. Ishow, J. Perkins, J. F. Stoddart, H.-R. Tseng and S.
Wenger, J. Am. Chem. Soc., 2002, 124, 12786–12795.
0
Drienovská and Dr L. Villarino for useful discussion and suggestions.
22 J. Xie, W. Liu and P. G. Schultz, Angew. Chem. Int. Ed., 2007, 46,
9
239–9242.
2
3 J. H. Mills, S. D. Khare, J. M. Bolduc, F. Forouhar, V. K. Mulligan,
S. Lew, J. Seetharaman, L. Tong, B. L. Stoddard and D. Baker, J.
Am. Chem. Soc., 2013, 135, 13393–13399.
Notes and references
1
N. M. Goodey and S. J. Benkovic, Nat. Chem. Biol., 2008, 4, 474–
82.
Q. Cui and M. Karplus, Protein Sci., 2008, 17, 1295–1307.
J. Fastrez, ChemBioChem, 2009, 10, 2824–2835.
F. Rosati and G. Roelfes, ChemCatChem, 2010, 2, 916–927.
J. Bos and G. Roelfes, Curr. Opin. Chem. Biol., 2014, 19, 135–143.
J. C. Lewis, Curr. Opin. Chem. Biol., 2015, 25, 27–35.
2
4 K. D. Barker, A. L. Eckermann, M. H. Sazinsky, M. R. Hartings, C.
Abajian, D. Georganopoulou, M. A. Ratner, A. C. Rosenzweig and
T. J. Meade, Bioconjug. Chem., 2009, 20, 1930–1939.
5 H. K. Munch, S. T. Heide, N. J. Christensen, T. Hoeg-Jensen, P. W.
Thulstrup and K. J. Jensen, Chem. – Eur. J., 2011, 17, 7198–7204.
6 A. J. Boersma, B. L. Feringa and G. Roelfes, Angew. Chem. Int.
Ed., 2009, 48, 3346–3348.
7 D. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt and R. Xu, J.
Am. Chem. Soc., 2007, 129, 10029–10041.
8 D. A. Evans, K. R. Fandrick and H.-J. Song, J. Am. Chem. Soc.,
4
2
3
4
5
6
7
2
2
2
2
2
3
E. M. Brustad and F. H. Arnold, Curr. Opin. Chem. Biol., 2011, 15,
2
01–210.
8
Z. Liu, V. Lebrun, T. Kitanosono, H. Mallin, V. Köhler, D.
Häussinger, D. Hilvert, S. Kobayashi and T. R. Ward, Angew.
Chem. Int. Ed., 2016, 55, 11587–11590.
2
005, 127, 8942–8943.
9 T. B. Poulsen and K. A. Jørgensen, Chem. Rev., 2008, 108, 2903–
915.
0 M. A. Halcrow, Crystals, 2016, 6, 58.
9
J. Lubelski, A. De Jong, R. Van Merkerk, H. Agustiandari, O. P.
Kuipers, Jan Kok and A. J. M. Driessen, Mol. Microbiol., 2006, 61,
2
7
71–781.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins