Shen et al.
formally the equivalent of a [3 + 3] cycloaddition,6-8
a
term described in Seebach’s carboannulation of nitroalk-
enes with enamines.9
The significance of tandem strategies in natural prod-
uct synthesis has been elegantly reviewed by Tietze.10
This particular formal cycloaddition strategy should
provide a unique approach to 1-oxadecalins and oxa-
spirocycles that are well represented in biologically
relevant natural products such as arisugacins (6),11
phomactin A (7),12,13 penostatin A (8),14 rhododarichr-
moanic acid A (9),15 pyripyropenes (10),16 and orevactaene
(11)17 (Figure 1). We became interested in this reaction
specifically because of arisugacin A (6a ) that was isolated
(6) Examples of [3 + 3] cycloaddition reactions in the truest sense
are extremely scarce. There are limited examples of metal mediated
[3 + 3] cycloaddition reactions. For recent reviews: a) Fru¨hauf, H.-W.
Chem. Rev. 1997, 97, 523. (b) Lautens, M.; Klute, W.; Tam, W. Chem.
Rev. 1996, 96, 49.
(7) For a review, see: Hsung, R. P.; Wei, L.-L.; Sklenicka, H. M.;
Shen, H. C.; McLaughlin, M. J .; Zehnder, L. R. In Trends Heterocycl.
Chem. 2001, 7, 1-24.
(8) For recent reviews on stepwise [3 + 3] formal cycloadditions
leading to bridged carbocycles, pyridines, or pyridones using enamines,
enaminones, enol ethers, or â-ketoesters, see: (a) Filippini, M.-H.;
Rodriguez, J . Chem. Rev. 1999, 99, 27. (b) Rappoport, Z. The Chemistry
of Enamines. In The Chemistry of Functional Groups; J ohn Wiley and
Sons: New York, 1994. (c) Filippini, M.-H.; Faure, R.; Rodriguez, J . J .
Org. Chem. 1995, 60, 6872 and refs 21-33 cited therein.
(9) (a) Seebach, D.; Missbach, M.; Calderari, G.; Eberle, M. J . Am.
Chem. Soc. 1990, 112, 7625. For related reactions, see: (b) Landesman,
H. K.; Stork, G. J . Am. Chem. Soc. 1956, 78, 5129. (c) Hendrickson, J .
B.; Boeckman, R. K. J r. J . Am. Chem. Soc. 1971, 93, 1307. (d) Alexakis,
A.; Chapdelaine, M. J .; Posner, G. H. Tetrahedron Lett. 1978, 19, 4209.
(10) (a) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl. 1993,
32, 131. b) Tietze, L. F. J . Heterocycl. Chem. 1990, 27, 47.
(11) (a) O˜ mura, S.; Kuno, F.; Otoguro, K.; Sunazuka, T.; Shiomi,
K.; Masuma, R.; Iwai, Y. J . Antibiot. 1995, 48, 745. For biological
activities of arisugacin, see: (b) Kuno, F.; Otoguro, K.; Shiomi, K.; Iwai,
Y.; O˜ mura, S. J . Antibiot. 1996, 49, 742. (c) Kuno, F.; Shiomi, K.;
Otoguro, K.; Sunazuka, T.; O˜ mura, S. J . Antibiot. 1996, 49, 748. (d)
Otoguro, K.; Kuno, F.; O˜ mura, S. Pharmacol. Ther. 1997, 76, 45. For
C-H, see: (e) Otoguro, K.; Shiomi, K.; Yamaguchi, Y.; Arai, N.;
Sunazuka, T.; Masuma, R.; Iwai, Y.; O˜ mura, S. J . Antibiot. 2000, 53,
50.
(12) For phomactin A, see: (a) Sugano, M.; Sato, A.; Iijima, Y.;
Oshima, T.; Furuya, K.; Kuwano, H.; Hata, T.; Hanzawa, H. J . Am.
Chem. Soc. 1991, 113, 5463. (b) Sugano, M.; Sato, A.; Iijima, Y.; Furuya,
K.; Haruyama, H.; Yoda, K.; Hata, T. J . Org. Chem. 1994, 59, 564. (c)
Sugano, M.; Sato, A.; Iijima, Y.; Furuya, K.; Kuwano, H.; Hata, T. J .
Antibiot. 1995, 48, 1188.
(13) (a) Miyaoka, H.; Saka, Y.; Miura, S.; Yamada, Y. Tetrahedron
Lett. 1996, 37, 7107. (b) Foote, K. M.; Hayes, C. J .; Pattenden, G.
Tetrahedron Lett. 1996, 37, 275. (c) Foote, K. M.; J ohn, M.; Pattenden,
G. Synlett 2001, 365. (d) Kallan, N. C.; Halcomb, R. L. Org. Lett. 2000,
2, 2687. (e) Seth, P. P.; Totah, N. I. Org. Lett. 2000, 2, 2507. (f) Mi, B.;
Maleczka, R. E., J r. Org. Lett. 2001, 3, 1491. (g) Chemler, S. R.; Iserloh,
U.; Daneshefsky, S. J . Org. Lett. 2001, 3, 2949. (h) Houghton, T. J .;
Choi, S.; Rawal, V. H. Org. Lett. 2001, 3, 3615.
(14) For isolations of penostatins, see: (a) Takahashi, C.; Numata,
A.; Yamada, T.; Minoura, K.; Enmoto, Konishi, K.; Nakai, M.; Matsuda,
C.; Nomoto. K. Tetrahedron Lett. 1996, 37, 655. For synthesis, see:
(b) Snider, B. B.; Liu, T. J . Org. Chem. 2000, 65, 8490.
(15) For isolation of rhododaurichromanic acid: Kashiwada, Y.;
Yamzaki, K.; Ikeshiro, Y.; Yamagishi, T.; Fujioko, T.; Mihashi, K.;
Mizuki, K.; Cosentino, L. M.; Fowke, K.; Morris-Natschke, S. L.; Lee,
K.-H. Tetrahedron 2001, 57, 1559.
(16) (a) Tomoda, H.; Tabata, N.; Yang, D. J .; Namatame, I.; Tanaka,
H.; O˜ mura, S.; Kaneko, T. J . Antibiot. 1996, 49, 292. (b) b) Obata, R.;
Sunazuka, T.; Li, Z. R.; Tian, Z. M.; Harigava, Y.; Tabata, N.; Tomoda,
H.; O˜ mur, S. J . Antibiotics 1996, 49, 1133. For total synthesis of
pyripyropene A and E, see: (c) Smith, A. B., III; Kinsho, T.; Sunazuka,
T.; O˜ mura, S. Tetrahedron Lett. 1996, 37, 6461. (d) Nagamitsu, T.;
Sunazuka, T.; Obata, R.; Tomoda, H.; Tanaka, H.; Harigaya, Y.;
O˜ mura, S.; Smith, A. B., III. J . Org. Chem. 1995, 60, 8126. For
synthesis of a related natural product GERI-BP001, see: (d) Parker,
K. A.; Resnick, L. J . Org. Chem. 1995, 60, 5726. For a biosynthesis of
pyripyropene A, see: (e) Tomoda, H.; Tabata, N.; Nakata, Y.; Nishida,
H.; Kaneko, T.; Obata, R.; Sunzazuka, T.; O˜ mura, S. J . Org. Chem.
1996, 61, 882. (f) Obata, R.; Sunazuka, T.; Tian, Z.; Tomoda, H.;
Harigaya, Y.; Omura, S.; Smith, A. B., III. Chem. Lett. 1997, 935.
F IGURE 1.
from Penicillium sp. Fo-4259 by O˜ mura.11 Arisugacin A
(6a ) is identified as the most potent and selective
inhibitor known against acetylcholinesterase (AChE)
with an IC50 value of 1 nM,11 and thus, it possesses
therapeutic significance in treatment of dementia dis-
eases.18
Despite the obvious synthetic potential of this formal
cycloaddition or annulation reaction, its application has
remained little known because of the competing reaction
pathways due to 1,2- versus 1,4-addition and the C-
addition versus O-addition (Scheme 2). After Link’s first
report using 4-hydroxycoumarins and R,â-unsaturated
ketones,2 Moreno-Man˜as reported a detailed study fea-
turing reactions of 6-methyl-4-hydroxy-2-pyrone 12 and
crotyl aldehyde.3 A variety of products such as 13-17
were identified and isolated in various amounts, resulting
from these competing reaction pathways. The syntheti-
cally most useful product 13 was found in very low yields.
These discouraging preliminary studies seriously ham-
pered our efforts19-21 to achieve a total synthesis of
arisugacin A via this formal [3 + 3] cycloaddition
strategy. Although J onassohn22 and Hua23 reported the
use of cyclic enals to improve the overall product distri-
bution by suppressing the 1,4-addition pathway, a gen-
eral solution remained elusive until we communicated
(17) a) Shu, Y.-Z.; Ye, Q.; Li, H.; Kadow, K. F.; Hussain, R. A.;
Huang, S.; Gustavson, D. R.; Lowe, S. E.; Chang, L. P..; Pirnik, D. M.;
Kodukula, K. Bioorg. Med. Chem. Lett. 1997, 17, 22295. (b) Organ, M.
G.; Bratovanov, S. Tetrahedron Lett. 2000, 41, 6945.
(18) J ohn, V.; Lieberburg, I.; Thorsett, E. D. Ann. Rep. Med. Chem.
1993, 28, 197.
1730 J . Org. Chem., Vol. 68, No. 5, 2003