F. Wyrwalski et al. / Applied Catalysis A: General 391 (2011) 334–341
341
In line with the previous results obtained with the Ru/C catalyst,
the same inhibition phenomenon of the p-xylene hydrogenation is
observed with the Ru-3-␣CD/C and Ru-3-␥CD/C samples. In con-
trast, when using the chemically modified RaMe--CD, it has been
found that the simultaneous hydrogenation of o- and p-xylene is
of the same order of magnitude than the one measured with the
most reactive substrate, i.e. p-xylene, showing that the inhibition
effect is here drastically reduced. This behavior confirms the pre-
vious results obtained with the xylenes tested separately and can
be explained by a higher reactant surface concentration close to
the metal active sites thanks to the best ability of RaMe--CD to
form inclusion complexes with the aromatic substrate. In terms of
stereoselectivity, the formation of the trans-1,4-DMCH is also more
favored over the Ru-3-CD/C sample as the selectivity achieves
24.8% against 15.4% without cyclodextrin.
[3] A. Guerrero-Ruiz, P. Badenes, I. Rodriguez-Ramos, Appl. Catal. A Gen. 173 (1998)
313–321.
[4] R. Narayanan, M.A. El-Sayed, J. Catal. 234 (2005) 348–355.
[5] C.L. Hui, X.G. Li, I.M. Hsing, Electochim. Acta 51 (2005) 711–719.
[6] S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori, S. Kuwabata, T.
Torimoto, M. Matsumura, Angew. Chem. 118 (2006) 7221–7224;
S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori, S. Kuwabata, T.
Torimoto, M. Matsumura, Angew. Chem. Int. Ed. 45 (2006) 7066–7069.
[7] H.S. Oh, J.G. Oh, H.G. Hong, H. Kim, Electochim. Acta 52 (2007) 7278–7285.
[8] C.Y. Lu, M.N. Wey, L.I. Chen, Appl. Catal. A Gen. 325 (2007) 163–174.
[9] J.M. Nadgeri, M.M. Telkar, C.V. Rode, Catal. Commun. 9 (2008) 441–446.
[10] B.A. Kakade, S. Sahoo, S.B. Halligudi, V.K. Pillai, J. Phys. Chem. C 11 (2008)
13317–13319.
[11] Y. Motoyama, M. Takasaki, S.-H. Yoon, I. Mochida, H. Nagashima, Org. Lett. 11
(2009) 5042–5045.
[12] A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 102 (2002) 3757–3778.
[13] B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104 (2004)
3893–3946.
[14] U. Drechsler, B. Erdogan, V.M. Rotello, Chem. Eur. J. 10 (2004) 5570–5579.
[15] D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. 117 (2005) 8062–8083;
D. Astruc, F. Lu, J.R. Aranzaes, Angew. Chem. Int. Ed. 44 (2005) 7852–7872.
[16] A. Roucoux, A. Nowicki, K. Philippot, in: D. Astruc (Ed.), Nanoparticles and
Catalysis, Wiley–VCH, Weinheim, 2008, pp. 349–388.
[17] M.T. Reetz, S. Waldvogel, Angew. Chem. 109 (1997) 870–873;
M.T. Reetz, S. Waldvogel, Angew. Chem. Int. Ed. 36 (1997) 865–867.
[18] R. Breslow, S.D. Dong, Chem. Rev. 98 (1998) 1997–2011.
[19] H. Bricout, F. Hapiot, A. Ponchel, S. Tilloy, E. Monflier, Sustainability 1 (2009)
924–945.
[20] M. Ferreira, H. Bricout, A. Sayede, A. Ponchel, S. Fourmentin, S. Tilloy, E. Monflier,
Adv. Synth. Catal. 350 (2008) 609–618.
[21] M. Komiyama, H. Hirai, Bull. Chem. Soc. Jpn. 56 (1983) 2833–2834.
[22] J. Alvarez, J. Liu, E. Roman, A.E. Kaifer, Chem. Commun. (2000) 1151–
1152.
[23] J. Liu, J. Alvarez, W. Ong, E. Roman, A.E. Kaifer, Langmuir 17 (2001) 6762–
6764.
[24] L. Strimbu, J. Liu, A.E. Kaifer, Langmuir 19 (2003) 483–485.
[25] J. Liu, W. Ong, A.E. Kaifer, Langmuir 18 (2002) 5981–5983.
[26] J. Liu, S. Mendoza, E. Roman, M.J. Lynn, R.L. Xu, A.E. Kaifer, J. Am. Chem. Soc. 121
(1999) 4304–4305.
[27] S.C. Mhadgut, K. Palaniappan, M. Thimmaiah, S.A. Hackney, B. Török, J. Liu,
Chem. Commun. (2005) 3207–3209.
[28] C. Xue, K. Palaniappan, G. Arumugam, S.A. Hackney, J. Liu, H. Liu, Catal. Lett. 116
(2007) 94–100.
[29] A. Nowicki, Y. Zhang, B. Léger, J.P. Rolland, H. Bricout, E. Monflier, A. Roucoux,
Chem. Commun. (2006) 296–298.
[30] A. Nowicki-Denicourt, A. Ponchel, E. Monflier, A. Roucoux, J. Chem. Soc., Dalton
Trans. (2007) 5714–5719.
[31] A. Denicourt-Nowicki, A. Roucoux, F. Wyrwalski, E. Monflier, A. Ponchel, Chem.
Eur. J. 14 (2008) 8090–8093.
[32] Y. Kenichi, M. Atsushi, T. Yukio, S. Mitsukatsu, Y. Yoshiaki, I. Tomoyuki, JP patent
8333406 (1996).
4. Conclusion
Ruthenium(0) nanoparticles were synthesized by using RuCl3
in the presence of randomly methylated cyclodextrins (␣,  and
␥) as capping materials and deposited onto the carbon support via
adsorption. The TEM images showed that the nanoparticles have
a spherical shape with an average diameter of 2.4 nm, randomly
dispersed on the external surface and in the mesopores of the car-
bon. The carbon-supported ruthenium(0) nanocatalysts stabilized
by randomly methylated cyclodextrins were evaluated in the gas
phase hydrogenation of xylene and appeared to be more efficient
than the reference Ru/C catalyst. Thus, our results demonstrated
that the randomly methylated -cyclodextrin can be considered as
an original tool to develop heterogeneous catalysts for gas phase
reactions thanks to its ability to stabilize and disperse the metal-
lic nanoparticles and to concentrate the aromatic reactants in the
vicinity of the catalytic active sites through molecular recogni-
tion phenomena. Thus, the optimization of the catalyst preparation
showed that the Ru-3-CD/C sample allowed the achievement of
the highest hydrogenation activity and stereoselectivity towards
the formation of trans-dimethylcyclohexane. Most important, we
have demonstrated that these catalytic performances in terms of
activity and stereoselectivity remain high in the case of a two-
component mixture of aromatics. This key result could answer to a
great industrial catalytic challenge, in particular with the increasing
industrial demand for low aromatic diesel fuels.
[33] S. Lowell, J. Shields, M. Thomas, M. Thommes, Characterization of Porous Solids
and Powders: Surface Area, Pore Size and Density, Kluwer Academy Publishers,
2004.
[34] H.P. Boehm, Carbon 32 (1994) 759–769.
[35] S. Hermans, C. Diverchy, O. Demoulin, V. Dubois, E.M. Gaigneaux, M. Devillers,
J. Catal. 243 (2006) 239–251.
[36] F.T. Trotta, M. Zanetti, G. Camino, Polym. Degrad. Stabil. 69 (2000) 373–
379.
Acknowledgments
The authors are grateful to Roquette Frère (Lestrem, France)
for the generous gift of cyclodextrins. MeadWestvaco Corporation
(Covington, USA) is also gratefully acknowledged for the gener-
ous gift of the activated carbon. The TEM facility in Lille (France)
is supported by the Conseil Regional du Nord-Pas de Calais, and the
European Regional Development Fund (ERDF).
[37] P. Reyes, M.E. König, G. Pecchi, I. Concha, M. Lopez Granados, J.L.G. Fierro, Catal.
Lett. 46 (1997) 71–75.
[38] R. Gomez, G. Del Angel, V. Bertin, React. Kinet. Catal. Lett. 44 (1991) 517–
522.
[39] M.V. Rahaman, M.A. Vannice, J. Catal. 127 (1991) 251–266.
[40] Y. Inoue, J.M. Herrmann, H. Schmidt, R.L. Burwell, J.B. Butt, J.B. Cohen, J. Catal.
53 (1978) 401–413.
[41] T. Kos´cielski, D. Sybilska, L. Feltl, E. Smolková-Keulemansová, J. Chromatogr.
286 (1984) 23–30.
References
[42] E. Smolková-Keulemansová, L. Feltl, S. Krysl, J. Incl. Phenom. 3 (1985) 183–
196.
[1] F. Rodriguez-Reinoso, Carbon 36 (1998) 159–175.
[2] H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier Ltd., Amsterdam,
2006.
[43] N. Szaniszlo, É. Fenyvesi, J. Balla, J. Incl. Phenom. Macrocycl. Chem. 53 (2005)
241–248.