HYDROGENATION OF o-, m-, AND p-XYLENE
355
to and both methyl groups directed away from the surface, 20. V o¨ lter, J., J. Catal. 3, 297 (1964).
2
2
2
1. V o¨ lter, J., Hermann, M., and Heise, K., J. Catal. 12, 307 (1968).
2. Rahaman, M. V., and Vannice, M. A., J. Catal. 127, 251, 267 (1991).
3. Keane, M. A., and Patterson, P. M., J. Chem. Soc. Faraday Trans. 92,
413 (1996).
4. Coughlan, B., and Keane, M. A., Zeolites 11, 12 (1991).
the repulsive potential is greatest in the case of neighboring
or o-methyl groups with the result that the consequent ad-
sorption energy is greatest. Hydrogenation yields stereoiso-
meric product mixtures where, due to steric constraints, one
1
2
hydrogen is added axially and one equatorially to the two 25. Coughlan, B., and Keane, M. A., Catal. Lett. 5, 101 (1990).
2
2
2
2
6. Keane, M. A., Ind. J. Technol. 30, 51 (1992).
7. Keane, M. A., and Webb, G., J. Catal. 136, 1 (1992).
8. Keane, M. A., Can. J. Chem. 72, 372 (1994).
carbons bearing a methyl group. The above orientation is
favored over the entire temperature interval for the hydro-
genation of m- and p-xylene, whereas at T > 433 K, in the
case of o-xylene the atoms not directly involved in the bind-
9. Smith, J. S., Thrower, P. A., and Vannice, M. A., J. Catal. 68, 270
(
1981).
ing process are rearranged to relieve the van der Waal’s 30. Coenen, J. W. E., Appl. Catal. 75, 193 (1991).
3
3
3
3
3
1. Greenfield, H., Ann. N.Y. Acad. Sci. 214, 233 (1973).
2. Minot, C., and Gallezot, P., J. Catal. 123, 341 (1990).
3. Candy, J., and Foilloux, P., J. Catal. 38, 110 (1975).
4. Renouprez, A. J., and Clagnet, G., J. Catal. 74, 296 (1982).
5. Dean, J. A., “Handbook of Organic Chemistry.” McGraw–Hill, New
York, 1987.
strain and preferably generate the more stable trans iso-
mer. A compensation effect has been observed for the re-
lationship between ln Aapp and Eapp with a Tiso = 456 � 8 K
and it is concluded that Aapp and Eapp are composite terms
which incorporate contributions due to the temperature
dependence of the surface concentration of the reactive
species.
3
3
6. Martin, G. A., J. Catal. 60, 345 (1979).
7. Frennet, A., Lienard, G., Crucq, A., and Degols, L., J. Catal. 53, 150
(
1978).
3
3
8. Ashmore, P. G., “Catalysis and Inhibition of Chemical Reactions.”
Butterworths, London, 1963.
9. Adamson, A. W., “Physical Chemistry of Surfaces,” 5th ed. Wiley, New
York, 1990.
REFERENCES
1
. Kieboom, A. P. G., and van Rantwijk, F., “Hydrogenation and Hy-
drogenolysis in Synthetic Organic Chemistry.” Delft Univ. Press, Delft, 40. Abon, M., Bertolini, J. C., Bily, J., Massardier, J., and Tardy, B., Surf.
1
977.
Sci. 162, 395 (1985).
2
3
. Stanislaus, A., and Cooper, B. H., Catal. Rev. Sci. Eng. 36, 75 (1994).
. Rylander, P. N., “Hydrogenation Methods.” Academic Press, London,
41. Tsai, M. C., and Muetterties, E. L., J. Am. Chem. Soc. 104, 2543
(1992).
1
985.
42. Galwey, A. K., Adv. Catal. 26, 247 (1977).
43. Galwey, A. K., and Brown, M. E., J. Catal. 60, 335 (1979).
�
ˇ
4
5
. Cerven y´ , L., and Ru zˇ i cˇ ka, V., Catal Rev. Sci. Eng. 24, 503 (1982).
. Augustine, R. L., “Catalytic Hydrogenation.” Dekker, New York, 44. Agrawal, R. K., J. Thermal Anal. 31, 73 (1986); 35, 73 (1989).
975. 45. Exner, O., Collect. Czech. Commun. 38, 1425 (1973).
. Rylander, P. N., “CatalyticHydrogenation in OrganicSyntheses.” Aca- 46. Bartok, M., Czombos, J., Felfoldi, K., Gera, L., Gondos, Gy.,
1
6
7
8
9
demic Press, London, 1979.
. Freifelder, M., “Catalytic Hydrogenation in Organic Synthesis, Pro-
cedures and Commentary.” Wiley, New York, 1978.
Molmar, A., Northeisz, F., Palinko, I., Wittmann, Gy., and Zsigmond,
A. G., “Stereochemistry of Heterogeneous Metal Catalysis.” Wiley,
New York, 1985.
ˇ
. “Catalytic Hydrogenation” (L. Cerven y´ , Ed.), Stud. Surf. Sci. Catal., 47. Siegal, S., Smith, G. V., Dmuchovsky, B., Dubell, D., and Halpern, W.,
Vol. 27. Elsevier, Amsterdam, 1986.
J. Am. Chem. Soc. 84, 3136 (1962).
. Siegel, S., Adv. Catal. 16, 123 (1966).
48. Kalsi, P. S., “Stereochemistry, Conformation and Mechanism.” Wiley
Eastern Ltd., New Delhi, 1990.
1
1
1
1
1
1
0. Rader, Ch. P., and Smith, H. A., J. Am. Chem. Soc. 84, 1443 (1962).
1. Hartog, F., and Zwietering, P., J. Catal. 2, 79 (1963).
49. Snagovskii, Yu., Lyubarskii, G. D., and Ostrovskii, G. M., Kinet. Katal.
7, 232 (1966).
50. van Meerten, R. Z. C., and Coenen, J. W. E., J. Catal. 46, 13 (1977).
51. Prasad, K. H. V., Prasad, K. B. S., Muallikarjunan, M. M., and
Vaidyeswaren, R., J. Catal. 84, 65 (1983).
52. Zrn cˇ evi c´ , S., and Ru sˇ i c´ , D., Chem. Sci. Eng. 43, 763 (1988).
53. Coughlan, B., and Keane, M. A., J. Chem. Soc. Faraday Trans. 86, 3961
(1990).
54. Barbier, J., Morales, A., and Maurel, R., Nouv. J. Chim. 4, 223
(1980).
2. Bond, G. C., “Catalysis by Metals.” Academic Press, London, 1962.
3. Wauquier, B., and Jungers, J. C., Bull. Soc. Chim. France 1280 (1957).
4. Burwell, R. L., Jr., Chem. Rev. 57, 895 (1957).
5. Leitz, G., and V o¨ lter, J., in “Mechanism of Hydrocarbon Reactions.”
p. 151. Elsevier, Amsterdam, 1975.
1
1
6. Dufresne, P., Bigeard, P. H., and Billon, A., Catal. Today 1, 367 (1987).
7. Armendia, N. A., Borau, V., Jimenez, C., and Marinas, J. M., Bull. Soc.
Chim. Belg. 91, 7743 (1982).
1
1
8. Gomez, R., Del Angelo, G., and Corro, G., Nouv. Chem. 4, 219 (1980).
9. Vinnegra, M., Cordoba, G., and Gomez, R., J. Mol. Catal. 58, 107
55. Quinn, H. A., Graham, J. H., McKervey, M. A., and Rooney, J. J.,
J. Catal. 22, 136 (1976).
(
1990).