12 Nucleic Acids Research, 2019
ACKNOWLEDGEMENTS
16. Holeman,L.A., Robinson,S.L., Szostak,J.W. and Wilson,C. (1998)
Isolation and characterization of fluorophore-binding RNA
aptamers. Fold. Des., 3, 423–431.
17. Sunbul,M. and J a¨ schke,A. (2018) SRB-2: a promiscuous rainbow
aptamer for live-cell RNA imaging. A promiscuous rainbow aptamer
for live-cell RNA imaging. Nucleic Acids Res., 46, e110.
Access to a MicroCal PEAQ-ITC was kindly provided by
Malvern Panalytical GmbH Germany. Laura Garske and
Sebastian Mayer are acknowledged for technical assistance.
1
1
2
8. Wirth,R., Gao,P., Nienhaus,G.U., Sunbul,M. and J a¨ schke,A. (2019)
SiRA: a silicon rhodamine-binding aptamer for live-cell
super-resolution RNA imaging. J. Am. Chem. Soc., 141, 7562–7571.
9. Jeng,S.C.Y., Chan,H.H.Y., Booy,E.P., McKenna,S.A. and Unrau,P.J.
FUNDING
(
2016) Fluorophore ligand binding and complex stabilization of the
European Research Council [ERC consolidator grant
RNA Mango and RNA Spinach aptamers. RNA, 22, 1884–1892.
0. Trachman,R.J., Truong,L. and Ferr e´ -D’Amar e´ ,A.R. (2017)
Structural principles of fluorescent RNA aptamers. Trends
Pharmacol. Sci., 38, 928–939.
682586 to C.H.]; University of W u¨ rzburg. Funding for open
access charge: European Research Council.
Conflict of interest statement. None declared.
2
1. You,M. and Jaffrey,S.R. (2015) Structure and mechanism of RNA
mimics of green fluorescent protein. Annu. Rev. Biophys., 44, 187–206.
2. Trachman,R.J. and Ferr e´ -D’Amar e´ ,A.R. (2019) Tracking RNA with
light: selection, structure, and design of fluorescence turn-on RNA
aptamers. Q. Rev. Biophys., 52, e8.
2
REFERENCES
1
. Paige,J.S., Wu,K.Y. and Jaffrey,S.R. (2011) RNA mimics of green
fluorescent protein. Science, 333, 642–646.
. Bouhedda,F., Autour,A. and Ryckelynck,M. (2017) Light-Up RNA
aptamers and their cognate fluorogens: from their development to
their applications. from their development to their applications. Int. J.
Mol. Sci., 19, E44.
2
3. Strack,R.L., Disney,M.D. and Jaffrey,S.R. (2013) A superfolding
Spinach2 reveals the dynamic nature of trinucleotide
2
repeat-containing RNA. Nat. Methods, 10, 1219–1224.
4. Warner,K.D., Chen,M.C., Song,W., Strack,R.L., Thorn,A.,
Jaffrey,S.R. and Ferr e´ -D’Amar e´ ,A.R. (2014) Structural basis for
activity of highly efficient RNA mimics of green fluorescent protein,
Nat. Struct. Mol. Biol., 21, 658–663.
2
3
4
. Neubacher,S. and Hennig,S. (2019) RNA structure and cellular
applications of fluorescent light-up aptamers. Angew. Chem. Int. Ed.,
2
5. Autour,A., Westhof,E. and Ryckelynck,M. (2016) iSpinach. A
fluorogenic RNA aptamer optimized for in vitro applications. Nucleic
Acids Res., 44, 2491–2500.
6. Filonov,G.S., Moon,J.D., Svensen,N. and Jaffrey,S.R. (2014)
Broccoli. Rapid selection of an RNA mimic of green fluorescent
protein by fluorescence-based selection and directed evolution. J. Am.
Chem. Soc., 136, 16299–16308.
5
8, 1266–1279.
. Jepsen,M.D.E., Sparvath,S.M., Nielsen,T.B., Langvad,A.H.,
Grossi,G., Gothelf,K.V. and Andersen,E.S. (2018) Development of a
genetically encodable FRET system using fluorescent RNA aptamers.
Nat. Commun., 9, 18.
2
5
6
. Roszyk,L., Kollenda,S. and Hennig,S. (2017) Using a specific
RNA-protein interaction to quench the fluorescent RNA Spinach.
ACS Chem. Biol., 12, 2958–2964.
. Masuda,I., Igarashi,T., Sakaguchi,R., Nitharwal,R.G., Takase,R.,
Han,K.Y., Leslie,B.J., Liu,C., Gamper,H., Ha,T. et al. (2017) A
genetically encoded fluorescent tRNA is active in live-cell protein
synthesis. Nucleic Acids Res., 45, 4081–4093.
. Litke,J.L. and Jaffrey,S.R. (2019) Highly efficient expression of
circular RNA aptamers in cells using autocatalytic transcripts. Nat.
Biotechnol., 37, 667–675.
. You,M., Litke,J.L., Wu,R. and Jaffrey,S.R. (2019) Detection of
low-abundance metabolites in live cells using an RNA integrator. Cell
Chem. Biol., 26, 471–481.
2
7. Huang,H., Suslov,N.B., Li,N.-S., Shelke,S.A., Evans,M.E.,
Koldobskaya,Y., Rice,P.A. and Piccirilli,J.A. (2014) A
G-quadruplex-containing RNA activates fluorescence in a GFP-like
fluorophore. Nat. Chem. Biol., 10, 686–691.
2
8. Fernandez-Millan,P., Autour,A., Ennifar,E., Westhof,E. and
Ryckelynck,M. (2017) Crystal structure and fluorescence properties of
the iSpinach aptamer in complex with DFHBI. RNA, 23, 1788–1795.
9. Warner,K.D., Sjeklo c´ a,L., Song,W., Filonov,G.S., Jaffrey,S.R. and
Ferr e´ -D’Amar e´ ,A.R. (2017) A homodimer interface without base
pairs in an RNA mimic of red fluorescent protein. Nat. Chem. Biol.,
7
8
9
2
1
3, 1195–1201.
3
0. Shelke,S.A., Shao,Y., Laski,A., Koirala,D., Weissman,B.P.,
Fuller,J.R., Tan,X., Constantin,T.P., Waggoner,A.S., Bruchez,M.P.
et al. (2018) Structural basis for activation of fluorogenic dyes by an
RNA aptamer lacking a G-quadruplex motif. Nat. Commun., 9, 4542.
1. Trachman,R.J., Demeshkina,N.A., Lau,M.W.L.,
. Tan,X., Constantin,T.P., Sloane,K.L., Waggoner,A.S., Bruchez,M.P.
and Armitage,B.A. (2017) Fluoromodules consisting of a
promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes.
selection, characterization, and bioimaging, J. Am. Chem. Soc., 139,
3
9
001–9009.
Panchapakesan,S.S.S., Jeng,S.C.Y., Unrau,P.J. and
1
1
0. Song,W., Strack,R.L., Svensen,N. and Jaffrey,S.R. (2014)
Plug-and-play fluorophores extend the spectral properties of Spinach.
J. Am. Chem. Soc., 136, 1198–1201.
1. Song,W., Filonov,G.S., Kim,H., Hirsch,M., Li,X., Moon,J.D. and
Jaffrey,S.R. (2017) Imaging RNA polymerase III transcription using
a photostable RNA-fluorophore complex. Nat. Chem. Biol., 13,
Ferr e´ -D’Amar e´ ,A.R. (2017) Structural basis for high-affinity
fluorophore binding and activation by RNA Mango. Nat. Chem.
Biol., 13, 807–813.
2. Trachman,R.J., Abdolahzadeh,A., Andreoni,A., Cojocaru,R.,
Knutson,J.R., Ryckelynck,M., Unrau,P.J. and Ferr e´ -D’Amar e´ ,A.R.
3
(
2018) Crystal structures of the mango-II RNA aptamer reveal
1
187–1194.
heterogeneous fluorophore binding and guide engineering of variants
with improved selectivity and brightness. Biochem., 57, 3544–3548.
3. Filonov,G.S., Song,W. and Jaffrey,S.R. (2019) Spectral tuning by a
single nucleotide controls the fluorescence properties of a fluorogenic
aptamer. Biochem., 58, 1560–1564.
4. Steinmetzger,C., Palanisamy,N., Gore,K.R. and H o¨ bartner,C. (2019)
A multicolor large stokes shift fluorogen-activating RNA aptamer
with cationic chromophores. Chem. Eur. J., 25, 1931–1935.
5. Lerestif,J.M., Perrocheau,J., Tonnard,F., Bazureau,J.P. and
Hamelin,J. (1995) 1,3-Dipolar cycloaddition of imidate ylides on
imino-alcohols. Synthesis of new imidazolones using solvent free
conditions. Tetrahedron, 51, 6757–6774.
1
1
2. Babendure,J.R., Adams,S.R. and Tsien,R.Y. (2003) Aptamers switch
on fluorescence of triphenylmethane dyes. J. Am. Chem. Soc., 125,
3
3
3
1
4716–14717.
3. Dolgosheina,E.V., Jeng,S.C.Y., Panchapakesan,S.S.S., Cojocaru,R.,
Chen,P.S.K., Wilson,P.D., Hawkins,N., Wiggins,P.A. and Unrau,P.J.
(
2014) RNA mango aptamer-fluorophore. A bright, high-affinity
complex for RNA labeling and tracking. ACS Chem. Biol., 9,
412–2420.
2
1
1
4. Autour,A., C Y Jeng,S., D Cawte,A., Abdolahzadeh,A., Galli,A.,
Panchapakesan,S.S.S., Rueda,D., Ryckelynck,M. and Unrau,P.J.
(
2018) Fluorogenic RNA Mango aptamers for imaging small
non-coding RNAs in mammalian cells. Nat. Commun., 9, 656.
5. Trachman,R.J., Autour,A., Jeng,S.C.Y., Abdolahzadeh,A.,
Andreoni,A., Cojocaru,R., Garipov,R., Dolgosheina,E.V.,
Knutson,J.R., Ryckelynck,M et al.2019) Structure and functional
reselection of the Mango-III fluorogenic RNA aptamer. Nat. Chem.
Biol., 15, 472–479.
3
6. Gepshtein,R., Huppert,D. and Agmon,N. (2006) Deactivation
mechanism of the green fluorescent chromophore. J. Phys. Chem. B,
1
10, 4434–4442.