ORGANIC
LETTERS
2000
Vol. 2, No. 15
2229-2232
A Highly Efficient Asymmetric Synthesis
of Optically Active r,γ-Substituted
γ-Butyrolactones Using a Chiral
Auxiliary Derived from Isosorbide
Ming-Hua Xu, Wei Wang, and Guo-Qiang Lin*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenlin Lu,
Shanghai 200032, P. R. China
Received April 23, 2000
ABSTRACT
Using an easily accessible and inexpensive chiral auxiliary derived from isosorbide, optically active r,γ-substituted γ-butyrolactones were
obtained in high enantiomeric purity (up to >99% ee for trans) by the SmI -induced reductive coupling of chiral methacrylate 7 with ketones
2
in the presence of (−)-sultam as a proton source.
Compounds bearing the substituted γ-butyrolactone moiety
are widespread in nature and have received much interest
because of their physiological properties.1 Moreover, func-
tionalized γ-butyrolactones are important intermediates for
the synthesis of many organic compounds.2 Much attention
has been focused on the asymmetric synthesis of γ-butyro-
lactones.3 The approach based on SmI2-mediated reductive
radical reactions recently introduced by Fukuzawa4 is one
of the most facile and effective methods for preparing chiral
γ-butyrolactones. However, there has been no report, to the
best of our knowledge, concerning highly enantioselective
synthesis of R,γ-substituted γ-butyrolactones.5 In a previous
paper, we described the asymmetric synthesis of optically
active γ-methyl-γ-phenyl-γ-butyrolactone using easily ac-
cessible and inexpensive chiral auxiliaries derived from
(1) (a) Drioli, S.; Felluga, F.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin,
E. J. Org. Chem. 1998, 63, 2385-2388. (b) Rodriguez, C. M.; Martin, T.;
Martin, V. S. J. Org. Chem. 1996, 61, 8448-8452.
V.; Prabhakaran, J.; George, T. G. Tetrahedron 1997, 44, 15061-15068.
(j) Taniguch, N.; Uemura, M. Tetrahedron Lett. 1997, 38, 7199-7202. (k)
Merlic, C. A.; Walsh, J. C. Tetrahedron Lett. 1998, 39, 2083-2086. For
catalysis mediated by chiral metal complexes, see: (l) Ohkuma, T.;
Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509-5512. (m)
Doyle, M. P.; Protopopova, M. N.; Zhou, Q.-L.; Bode, J. W. J. Org. Chem.
1995, 60, 6654-6655. (n) Yu, W. Y.; Bensimon, C.; Alper, H. Chem. Eur.
J. 1997, 3, 417-423. (o) Cao, P.; Zhang, X. J. Am. Chem. Soc. 1999, 121,
7708-7709. For ligand-controlled asymmetric synthesis, see: (p) Mikami,
K.; Yamaoka, M. Tetrahedron Lett. 1998, 39, 4501-4504.
(2) (a) Koch, S. S. C.; Chamberline, A. R. J. Org. Chem. 1993, 58, 2725-
2737. (b) Grimm, E. L.; Reissig, H. U. J. Org. Chem. 1985, 50, 242-244.
(3) For transformation of chiral natural products, see: (a) Suzuki, Y.;
Mori, W.; Ishizone, H.; Naito, K.; Honda, T. Tetrahedron Lett.1992, 33,
4931-4932. (b) Yoda, H.; Shirakawa, K.; Takabe, K. Chem. Lett. 1991,
489-490. (c) Yoda, H.; Shirakawa, K.; Takabe, K. Tetrahedron Lett.1991,
32, 3401-3404. For dehydration of chiral γ-hydroxyl acid, see: (d)
Ramachandran, P. V.; Krzeminski, M. P.; Venkat, M.; Reddy, R.; Brown,
H. C. Tetrahedron: Asymmetry, 1999, 10, 11-15. (e) Boly, V.; Vigneron,
J. P. Tetrahedron Lett. 1980, 21, 1735. (f) Brown, H. C.; Kulkarni, S. V.;
Racherla, U. S. J. Org. Chem. 1994, 59, 365-369. For induction of chiral
auxiliaries, see: (g) Yammamoto, Y.; Sakamoto, A.; Nishioka, T.; Oda, J.;
Fukazawa, Y. J. Org. Chem. 1991, 56, 1112-1119. (h) Nair, V.;
Prabhakaran, J. J. Chem. Soc., Perkin Trans. 1 1996, 593-594. (i) Nair,
(4) Fukuzawa, S.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem.
Soc. 1997, 119, 1482-1483.
(5) During the preparation of this manuscript, a method was reported
for the synthesis of cis-R,γ-dialkyl γ-lactones using chiral sec-dialkyl
bishomopropargylic alcohols as the reactant; see: Diaz, D.; Martin, V. S.;
Org. Lett. 2000, 2, 335-337.
10.1021/ol005978f CCC: $19.00 © 2000 American Chemical Society
Published on Web 07/06/2000