Sesterpene γ-Lactone from Mountain Wormwood
Journal of Natural Products, 2009, Vol. 72, No. 3 343
worked up by evaporation, and the residue was purified by gravity CC
on silica gel (petroleum ether-EtOAc gradient, from 8:2 to 6:4) to
afford 29 mg of recovered 2 and 34 mg (31% based on the conversion
of costunolide) of 10 as a white powder: mp 120-122 °C; IR (KBr)
Under similar conditions, costunolide (2) yielded a resinous mass,
partly insoluble in organic solvents, and probably resulting from a
polymerization process. The soluble fraction, when analyzed by 1H
NMR, showed a complex mixture.
1
νmax 1767, 1455, 1229, 1172, 1000, 943 cm-1; H NMR (CDCl3, 500
Acknowledgment. We are grateful to M. Amerio (Associazione “Zio
John”, Pietraporzio, CN, Italy) for the picture of A. umbelliformis shown
in the table of contents graphic.
MHz) δ 5.50 (1H, bd, J ) 8.0 Hz, H-6′); 4.86 (1H, bd, J ) 10.5 Hz,
H-1); 4.63 (1H, d, J ) 7.8 Hz, H-5); 4.47 (1H, t, J ) 7.8 Hz, H-6);
3.03 (1H, bs, H-2′); 2.42 (1H, m, H-9a); 2.35 (1H, m, H-7); 2.32 (1H,
m, H-3a); 2.26 (1H, m, H-11′); 2.25 (1H, m, H-2a); 2.23 (1H, m, H-3′a);
2.10 (1H, m, H-2b); 2.00 (1H, m, H-3b); 2.00 (1H, m, H-9b); 1.93
(1H, m, H-8a); 1.86 (1H, m, H-7′); 1.71 (1H, m, H-8′a); 1.67 (3H, s,
H-15); 1.65 (1H, m, H-13a); 1.57 (1H, m, H-8′b); 1.51 (1H, m, H-8b);
1.46 (3H, s, H-15′); 1.45 (1H, m, H-3′b); 1.40 (3H, s, H-14); 1.36 (3H,
s, H-14′); 1.32 (1H, m, H-13b); 1.20 (1H, d, J ) 7.0 Hz, H-13′); 13C
NMR (CDCl3, 125 MHz) δ 182.0 (s, C-12); 179.8 (s, C-12′); 150.5 (s,
C-1′); 146.1 (s, C-5′); 140.1 (s, C-4); 137.5 (s, C-10); 128.3 (d, C-5);
128.1 (d, C-1); 88.9 (d, C-6′); 79.4 (d, C-6); 73.1 (s, C-10′); 62.3 (s,
C-11); 57.0 (s, C-4′); 53.7 (t, C-3′); 51.4 (d, C-7); 51.4 (d, C-7′); 42.1
(d, C-11′); 41.3 (t, C-9); 40.6 (t, C-9′); 39.9 (t, C-3); 35.9 (t, C-13);
32.5 (2′); 27.2 (14′); 26.8 (t, C-8); 25.8 (t, C-2); 25.6 (t, C-8′); 20.4
(15′); 17.8 (q, C-15); 16.9 (q, C-14); 13.2 (q, C-13′); ESIMS (positive-
ion) m/z 503 [C30H40O5 + Na]+.
Transannular Cyclization of Genepolide (5). A solution of 5 (50
mg, 0.13 mmol) in CHCl3 (5 mL) was irradiated in a quartz
photochemical reactor using a low-pressure mercury lamp. The course
of the reaction was monitored by TLC (petroleum ether-EtOAc, 95:
5; Rf(5) ) 0.50; Rf(11) ) 0.60). After 20 min, the solvent was evaporated
and the residue, analyzed by 1H NMR, indicated complete conversion
to 11. An analytical sample was obtained by gravity CC on silica gel
(petroleum ether-EtOAc, 98.5:1.5): IR (KBr) νmax 1770, 1505, 1288,
1270, 1198, 980 cm-1; 1H NMR (CDCl3, 500 MHz) δ 5.38 (1H, bt, J
) 7.0, Hz, H-17); 5.05 (1H, bt, J ) 7.0 Hz, H-21); 4.91 (1H, bs, H-15a);
4.75 (1H, bs, H-15b); 4.10 (1H, t, J ) 8.2 Hz, H-6); 2.30 (1H, m,
H-25a); 2.20 (1H, m, H-16a); 2.12 (1H, m, H-16b); 2.12 (1H, m, H-5);
2.08 (2H, m, H-20a,b); 2.00 (2H, m, H-19a,b); 1.99 (1H, m, H-25b);
1.98 (1H, m, H-3a); 1.95 (1H, m, H-13a); 1.82 (1H, m, H-7); 1.67
(3H, bs, H-23); 1.65 (1H, m, H-13b); 1.64 (1H, m, H-3b); 1.60 (3H,
bs, H-24); 1.51 (1H, m, H-9a); 1.45 (1H, m, H-8a); 1.40 (1H, m, H-2a);
1.35 (1H, m, H-1a); 1.30 (1H, m, H-8b); 1.22 (1H, m, H-9b); 1.21
(1H, m, H-2b); 1.06 (1H, m, H-1b); 0.90 (3H, s, H-14); 13C NMR
(CDCl3, 125 MHz): δ 179.9 (s, C-12); 137.8 (s, C-18); 136.8 (s, C-4);
132.0 (s, C-22); 124.5 (d, C-21); 118.0 (d, C-17); 109.3 (t, C-15); 77.9
(d, C-6); 57.0 (d, C-7); 56.0 (d, C-5); 44.5 (s, C-11); 37.9 (t, C-19);
37.8 (t, C-1); 37.7 (t, C-9); 36.2 (t, C-3); 30.8 (t, C-13); 30.8 (t, C-25);
27.1 (t, C-16); 26.4 (q, C-23); 26.2 (s, C-10); 26.2 (t, C-20); 24.5 (t,
C-8); 24.0 (t, C-2); 22.0 (q, C-14); 18.2 (q, C-24); ESIMS (positive
ion) m/z 391 [C25H36O2 + Na]+.
References and Notes
(1) Appendino, G.; Taglialatela-Scafati, O. Drug-like Compounds from
Food Plants and Spices In Dietary Supplements of Plant Origin;
Maffei, M., Ed.; Taylor & Francis: London, 2003; pp 43-74.
(2) Hasler, C. M. J. Nutr. 2008, 138, 1216S–1220S.
(3) Haber, B. Am. J. Clin. Nutr. 1997, 66, 1053S–1057S.
(4) Colomer, R.; Lupu, R.; Papadimitropoulou, A.; Vello´n, L.; Va´zquez-
Martin, A.; Brunet, J.; Ferna´ndez-Gutie´rrez, A.; Segura-Carretero, A.;
Mene´ndez, J. A. Clin. Transl. Oncol. 2008, 10, 30–34.
(5) Allbaugh, L. G. Crete: a Case Study of an UnderdeVeloped Area;
Princeton University Press: Princeton, 1953.
(6) For a review, see: Sternini, C. Am. J. Physiol. Gastrointest. LiVer
Physiol. 2007, 292, G457-G461.
(7) Margolskee, R. F.; Dyer, J.; Kokrashvili, Z.; Salmon, K. S.; Ilegems,
E.; Daly, K.; Maillet, E. L.; Ninomiya, Y.; Mosinger, B.; Shirazi-
Beechev, S. P. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 15075–
15080.
(8) Tyler, V. E. In Herbs of Choice; Pharmaceutical Products Press: New
York, 1994; pp 42-46.
(9) Omer, B.; Krebs, S.; Omer, H.; Noor, T. O. Phytomedicine 2007, 14,
87–95.
(10) (a) Appendino, G.; Gariboldi, P.; Nano, G M. Phytochemistry 1982,
21, 1099–1102. (b) Appendino, G.; Belliardo, F.; Nano, G. M.;
Stefenelli, S. J. Agric. Food. Chem. 1982, 30, 518–522. (c) Appen-
dino, G.; Gariboldi, P.; Nano, G. M. Phytochemistry 1983, 22, 2767–
2772. (d) Appendino, G.; Gariboldi, P.; Calleri, M.; Chiari, G.;
Viterbo, D. J. Chem. Soc., Perkin Trans. 1 1983, 2705–2709. (e)
Appendino, G.; Gariboldi, P.; Valle, M. G. Gazz. Chim. Ital. 1988,
118, 55–59. (f) Appendino, G.; Tettamanzi, P.; Gariboldi, P.
Phytochemistry 1991, 30, 1319–1320. (g) Appendino, G.; Tagliapi-
etra, S.; Nano, G. M.; Cisero, M. Phytochemistry 1992, 31, 2537–
2538. (h) Appendino, G.; Tagliapietra, S.; Nano, G. M.; Cisero,
¨
M. Fitoterapia 1993, 64, 286–287. (i) Appendino, G.; Ozen, H. C.;
Jakupovic, J. Phytochemistry 1994, 36, 531–532. (j) Fattorusso, E.;
Taglialatela-Scafati, O.; Campagnuolo, C.; Santelia, F. U.; Appen-
dino, G.; Spagliardi, P. J. Agric. Food Chem. 2002, 50, 5131–5138.
(k) Appendino, G.; Borrelli, F.; Capasso, R.; Campagnuolo, C.;
Fattorusso, E.; Petrucci, F.; Taglialatela-Scafati, O. J. Agric. Food
Chem. 2003, 51, 6970–6974.
(11) Brockhoff, A.; Behrens, A.; Massarotti, A.; Appendino, G.; Meyerhof,
W. J. Agric. Food Chem. 2007, 55, 6236–6243.
(12) Rey, C.; Slacanin, I. ReV. Suis. Vitic. Arboric. Hortic. 1997, 29, 1–6.
(13) Bicchi, C.; Nano, G. M.; Frattinini, C. Eur. Food Res. Technol. 1982,
175, 182–185.
Under similar conditions, the reaction with costunolide (2) required
a longer time (90 min) and afforded a ca. 3:6:1 mixture (1H NMR
analysis) of R-, ꢀ-, and γ-cyclocostunolides (8a-c), which was
fractionated by gravity CC on silica gel (petroleum ether-EtOAc, 98:
2, to separate the R- and ꢀ-isomers, and petroleum ether-EtOAc, 9:1,
to elute the minor γ-isomer).
(15) Tang, J.; Ning, L.; Bi, C.; Li, W. J. Pharm. Pharmacol. 2007, 59,
637–643.
ˇ
(16) Bud⊃esˇ´ınsky´, M.; Saman, D. Annu. Rep. NMR Spectrosc. 1995, 231–
475.
Cope Rearrangement of Genepolide (5). A sample of 5 (30 mg,
0.08 mmol) was heated under vacuum at 220 °C (oil bath) for 3 min.
1H NMR analysis indicated quantitative conversion to 12. Evaporation
of the solvent afforded an off-white, amorphous foam: IR (KBr) νmax
1770, 1440, 1376, 1213, 1135, 1001 cm-1; 1H NMR (CDCl3, 500 MHz)
δ 5.76 (1H, dd, J ) 17.3, 10.8 Hz, H-1); 5.36 (1H, bt, J ) 7.0, Hz,
H-17); 5.05 (1H, bt, J ) 7.0 Hz, H-21); 4.99 (1H, bs, H-3a); 4.95 (1H,
bd, J ) 10.8 Hz, H-2a); 4.91 (1H, bd, J ) 17.3 Hz, H-2b); 4.66 (1H,
bs, H-3b); 4.21 (1H, t, J ) 11.2 Hz, H-6); 2.40 (1H, m, H-25a); 2.24
(1H, d, J ) 11.2 Hz, H-5); 2.20 (1H, m, H-16a); 2.14 (1H, m, H-16b);
2.06 (2H, m, H-20a,b); 1.99 (2H, m, H-19a,b); 1.95 (1H, m, H-13a);
1.95 (1H, m, H-25b); 1.79 (1H, m, H-7); 1.76 (3H, s, H-15); 1.67 (1H,
m, H-13b); 1.66 (3H, bs, H-23); 1.63 (1H, m, H-8a); 1.59 (3H, bs,
H-24); 1.57 (1H, m, H-9a); 1.45 (1H, m, H-8b); 1.39 (1H, m, H-9b);
1.04 (3H, s, H-14); 13C NMR (CDCl3, 125 MHz): δ 181.7 (s, C-12);
148.6 (d, C-1); 141.2 (s, C-4); 137.7 (s, C-18); 131.7 (s, C-22); 124.2
(d, C-21); 116.8 (t, C-2); 115.1 (t, C-3); 111.5 (d, C-17); 78.8 (d, C-6);
56.6 (d, C-5); 54.5 (d, C-7); 42.6 (s, C-10); 44.7 (s, C-11); 40.1 (t,
C-9); 37.6 (t, C-19); 30.5 (t, C-13); 26.5 (t, C-16); 26.2 (q, C-23); 25.9
(t, C-20); 24.8 (t, C-25); 24.0 (q, C-15); 23.0 (t, C-8); 18.6 (q, C-14);
18.2 (q, C-24); ESIMS (positive-ion) m/z 391 [C25H36O2 + Na]+.
(17) Stocking, E. M.; Williams, R. M. Angew. Chem., Int. Ed. 2003, 42,
3078–3155.
(18) Bicchi, C.; Rubiolo, P. Unpublished data.
(19) Myrcene reacts as a dienophile only under harsh thermal and acidic
conditions (Yin, D.; Yin, D.; Fu, Z.; Li, Q. J. Mol. Catal. A: Chem
1999, 148, 87–95. ) as testified by the lack of self-dimerization during
its industrial production from the thermal (>400 °C) cracking of
ꢀ-pinene. Dienophilic behavior has also been reported for its conju-
gated terminal double bond (Matusch, R.; Haberlein, H. Liebigs Ann.
Chem. 1987, 455-457.
(20) Actually, the thermal cycloreversion of exomethylene-γ-lactone Diels-
Alder adducts during GC analysis was observed: J. Spo¨rle, J.; Becker,
H.; Gupta, M. P.; Veith, M.; Huch, V. Tetrahedron 1989, 45, 5003–
5014. Spo¨rle, J.; Becker, H.; Allen, N. S.; Gupta, M. P. Phytochemistry
1991, 30, 3043–3047.
(21) Barrero, A. F.; Oltra, J. E.; Alvarez, M. Tetrahedron Lett. 1998, 39,
1401–1404.
(22) Houk, K. N.; Strozier, R. W. J. Am. Chem. Soc. 1973, 95, 4094–
4096.
(23) Kulkarni, G. H.; Kelkar, G. R.; Bhattacharyya, S. C. Tetrahedron 1964,
20, 2639–2645.
(24) Geissman, T. A.; Winters, T. E. Tetrahedron Lett. 1968, 3154,
3147.