3
Although the spectrum resembles the one reported for 4aH22+, the
absorptions are hypsochromically shifted by 9-16 nm.
Nevertheless, the spectrum retains a remarkably porphyrin-like
appearance, indicating that this species has similar electronic
features. Addition of triethylamine afforded the free base form 4c
and this gave a diminished Soret band at 384 nm and a weaker
absorption at 536 nm (Figure 1). This spectrum is still similar to
a porphyrin-type system, but also closely resembles the
electronic spectrum for [18]annulene.18 The UV-vis spectrum for
4c is blue shifted compared to its tetraphenyl counterpart 4a by
17-29 nm. These results indicate that the porphyrinoid core in 4a
has a significant conjugation interaction with the phenyl
substituents.
Conclusions
In conclusion, the formation of a tetraalkyl dideazaporphyrin
by McMurry coupling of a pyrrole diacrylaldehyde has been
investigated. The product exhibits porphyrin-like spectroscopic
properties, including strongly diatropic NMR spectra, but is
nevertheless highly unstable. The results concur with recent
computational analyses.
Acknowledgments
This work was supported by the National Science Foundation
(CHE-1855240).
1.4
1.2
1
Declaration of Competing Interest
The authors declare that they have no competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.
0.8
A
0.6
0.4
0.2
0
Electronic Supplementary Information
1
1
Experimental procedures and selected H NMR, H-1H COSY,
HSQC, DEPT-135, 13C NMR, and UV-Vis spectra are provided.
References and notes
350
450
550
650
750
1. Handbook of Porphyrin Science – With Applications to Chemistry,
Physics, Material Science, Engineering, Biology and Medicine, Kadish, K.
M.; Smith, K. M.; Guilard, R., Eds.; World Scientific Publishing: Singapore,
2010-2019, Vol. 1-45.
2. (a) Bonnett, R. Chem. Soc. Rev. 1995, 24, 19-33. (b) Ethirajan, M.; Chen,
Y.; Joshi, P.; Pandey, R. K. Chem. Soc. Rev. 2011, 40, 340−362.ꢀ
3. (a) Lu, H.; Zhang X. P. Chem. Soc. Rev. 2011, 40, 1899-1909. (b) Che,
C.-M.; Lo, V. K.-Y.; Zhou, C.-Y.; Huang, J. S. Chem. Soc. Rev. 2011, 40,
1950-1975. (c) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775-2823.
(d) Gopalaiah, K. Chem. Rev. 2013, 113, 3248-3296.
Wavelength (nm)
Figure 1. UV-vis spectra of 4c.2HBr in chloroform (red line) and
1% Et3N-chloroform (blue line).
2+
The proton NMR spectrum of 4cH2 demonstrated that this
species is highly diatropic. The internal CH protons were
strongly shielded, giving a multiplet at -5 ppm, and the NHs
afforded a resonance at -1.1 ppm (Figure 2). In addition, the
external protons were strongly deshielded and produced a
multiplet at 10.9 ppm, confirming the presence of a strong
aromatic ring current. The NMR spectrum for the free base form
could only be obtained by adding a small amount of NaOD in
D2O to the NMR tube. The resulting NMR spectrum, while of
poor quality, showed the internal CH protons upfield at -2.4 ppm
and the external protons downfield near 9.7 ppm. The results
show that the free base has decreased diatropicity but still has a
substantial ring current that is comparable to [18]annulene and
many porphyrinoid systems. Hence, the high degree of aromatic
character evident in these proton NMR spectra does not appear to
have any bearing on the stability of the structures.
4. Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Natale, C. D. Chem
Rev. 2017, 117, 2517-2583.
5. Medforth, C. J. In The Porphyrin Handbook, Kadish K. M.; Smith, K.
M.; Guilard, R., Eds.; Academic Press: San Diego, 2000; Vol. 5, pp 1–80.
6. (a) Lash T. D. J. Porphyrins Phthalocyanines 2011, 15, 1093-1115. (b)
Lash T. D. J. Porphyrins Phthalocyanines 2012, 16, 1093
7. Cyranski, M. K.; Krygowski, T. M.; Wisiorowski, M.; Hommes, N. J. R.
v. E.; Schleyer, P. v. R. Angew. Chem. Int. Ed. 1998, 37, 177-180.ꢀ
8. Pacholska, E.; Latos-Grazynski, L.; Ciunik, Z. Chem. Eur. J. 2002, 8,
5403-5406.ꢀ
9. (a) Lash T. D. Chem. Rev. 2017, 117, 2313-2446. (b) AbuSalim, D. I.;
Lash, T. D. J. Org. Chem. 2013, 78, 11535-11548.
10. Lash, T. D.; Jones, S. A.; Ferrence, G. M. J. Am. Chem. Soc. 2010, 132,
12786-12787.
11. Pacholska-Dudziak, E.; Szterenberg, L.; Latos-Grazynski, L. Chem. Eur.
J. 2011, 17, 3500-3511. ꢀ
12. Wu, J. I.; Fernandez, I.; Schleyer, P. v. R. J. Am. Chem. Soc. 2013, 135,
315-321.
13. (a) Aihara, J. i.; Nakagami, Y.; Sekine, R.; Makino, M. J. Phys. Chem. A
2012, 116, 11718-11730. (b) Ivanov, A. S.; Boldyrev, A. I. Org. Biomol.
Chem. 2014, 12, 6145-6150.
14. Xu, L.; Ferrence, G. M.; Lash, T. D. Org. Lett. 2006, 8, 5113-5116.
15. (a) Barton, D. H. R.; Zard, S. Z. J. Chem. Soc., Chem. Commun. 1985,
21, 1098-1100. (b) Barton, D. H. R.; Kervagoret, J.; Zard, S. Z. Tetrahedron
1990, 46, 7587-7598. (c) Lash, T. D.; Bellettini, J. R.; Bastian, J. A.; Couch,
K. B. Synthesis 1994, 170-172.
16. Gribble, G. W. In Name Reactions in Heterocyclic Chemistry; Li, J. J.,
Ed.; Wiley: Hoboken, NJ, 2005, pp 70-78. ꢀ
17. Bachman, G. B.; Maleski, R. J. J. Org. Chem. 1972, 37, 2810-2814.
18. (a) Sondheimer, F.; Wolovsky, R.; Amiel, Y. J. Am. Chem. Soc. 1962, 84,
274-284. (b) Lungerich, D.; Nizovtsev, A. V.; Heinemann, F. W.; Hampel, F.;
Meyer, K.; Majetich, G.; Schleyer, P. v. R.; Jux, N. Chem. Commun. 2016, 52,
4710-4713.
Figure 2. Partial proton NMR spectrum of 4c.2HBr in CDCl3
showing the downfield and upfield regions.