C. Brulé, F. Sultana, S. Hollenstein, T. Okazaki, K. K. Laali
,3,3-Trimethyl-1-(perylen-3-yl)-2,3-dihydro-3H-benzo[cd]perylene carbocations and computational data (Figures S1–S15 and Tables
FULL PAPER
1
1
(
14b): 38 mg, yield 64%. H NMR (400 MHz, CDCl
3
): δ = 8.31 (d,
S1–S2).
J = 7.6 Hz, 1 H), 8.28 (m, 2 H), 8.21 (d, J = 7.2 Hz, 1 H), 8.12 (d,
J = 7.6 Hz, 1 H), 8.03 (d, J = 7.2 Hz, 1 H), 7.99 (d, J = 7.6 Hz, 1
H), 7.92 (m, 2 H), 7.70 (m, 2 H), 7.67 (d, J = 8.4 Hz, 1 H), 7.64
Acknowledgments
(
(
(
8
1
1
d, J = 8.0 Hz, 1 H), 7.61 (d, J = 8.0 Hz, 1 H), 7.52 (m, 1 H), 7.49
dd, J = 8.0, 7.6 Hz, 1 H), 7.45 (dd, J = 8.0, 7.6 Hz, 1 H), 7.39
dd, J = 8.0, 7.6 Hz, 1 H), 7.22 (d, J = 8.8 Hz, 1 H), 6.99 (dd, J =
Support of our work in the PAH area under “reactive intermediates
of carcinogenesis of PAHs” by the National Cancer Institute of the
National Institutes of Health (2R15CA078235-02A1 and
.4, 8.0 Hz, 1 H), 6.91 (d, J = 8.0 Hz, 1 H), 2.99 (d, J = 14.4 Hz,
H, CH ), 2.06 (s, 3 H, CH ), 1.98 (d, J = 14.4 Hz, 1 H, CH ),
.67 (s, 3 H, CH ), 1.56 (s, 3 H, CH
) ppm. 13C NMR (101 MHz,
): δ = 146.0, 144.4, 143.5, 134.6, 134.5, 131.8, 131.7 (2C),
31.6, 131.2, 130.4, 130.3, 129.4, 129.3, 129.0, 128.5, 128.2, 127.5,
1R15CA078235-01A1) is gratefully acknowledge.
2
3
2
3
3
CDCl
3
[
1] T. Okazaki, K. K. Laali, B. Zajc, M. K. Lakshman, S. Kumar,
W. M. Baird, W.-M. Dashwood, Org. Biomol. Chem. 2003, 1,
509–1516.
2] K. K. Laali, S. Hollenstein, J. Chem. Soc. Perkin Trans. 2 1998,
1
1
1
27.4, 127.2, 127.0, 126.6 (2C), 125.7, 125.2, 123.9, 120.8, 120.7,
20.1, 119.9, 119.7, 119.6, 119.5, 49.9, 44.1, 34.9, 34.6, 33.7, 31.9
1
[
ppm (the signals of seven quaternay carbon atoms were not detect-
able).
897–904.
[3] K. K. Laali, M. Tanaka, S. Hollenstein, M. Cheng, J. Org.
Chem. 1997, 62, 7752–7757.
[4] K. K. Laali, P. E. Hansen, J. Org. Chem. 1997, 62, 580–5810.
[5] S. Hollenstein, K. K. Laali, Chem. Commun. 1997, 2145–2146.
[6] K. K. Laali, T. Okazaki, R. G. Harvey, J. Org. Chem. 2001, 66,
1
,3,3-Trimethyl-3H-benzo[cd]perylene (14c): Less than 2 mg, yield
1
Ͻ 5%. H NMR (400 MHz, CDCl
.15 (m, 3 H), 7.63 (m, 2 H), 7.53 (d, J = 8.1 Hz, 1 H), 7.46 (m, 2
H), 7.36 (d, J = 8.0 Hz, 1 H), 5.81 (q, J = 1.3 Hz, 1 H), 2.20 (d, J
1.3 Hz, 3 H), 1.54 (s, 6 H) ppm.
3
): δ = 8.23 (d, J = 8.0 Hz, 1 H),
8
3
977–3983.
7] R. G. Harvey, Polycyclic Aromatic Hydrocarbons, Wiley-VCH,
New York, 1997, pp. 140–143.
8] K. K. Laali, P. E. Hansen, J. Org. Chem. 1991, 56, 6795–6803.
[
=
[
[
4. Stable Carbocation Generation from 14a and 12c
9] K. K. Laali, S. Hollenstein, R. G. Harvey, P. E. Hansen, J. Org.
Protonation of 14a: In a 5-mm NMR tube 6 mg of 3-isopropenylper-
ylene 14a was introduced and tube was flushed with argon and
Chem. 1997, 62, 4023–4028.
[10] K. K. Laali, T. Okazaki, S. Kumar, S. E. Galembeck, J. Org.
Chem. 2001, 66, 780–788.
11] C. Brulé, K. K. Laali, T. Okazaki, M. K. Lakshman, J. Org.
Chem. 2007, 72, 3232–3241.
12] R. G. Harvey, Polycyclic Aromatic Hydrocarbons, Wiley-VCH,
cooled to –78 °C. About 0.3 mL of SO
the NMR tube directly. After completion of SO
drops of FSO H were slowly added in order to prevent any local
overheating. The mixture immediately turned deep-green. After
vigorous stirring at –78 °C (vortex), 4–5 drops of CD Cl were
slowly introduced into the NMR tube (vortex mixing) and the sam-
2
ClF was condensed into
[
2
ClF addition, 3
3
[
New York, 1997, pp. 153.
13] W. Koch, M. C. Holthausen, A Chemist’s Guide to Density
2
2
[
Functional Theory, 2nd ed., Wiley-VCH, Weinheim, 2000.
ple was analyzed by NMR at –65 °C. Afterwards, the sample was [14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
warmed to –10 °C (NaCl/ice/water bath) and kept at this tempera-
ture for 30 minutes (regular vortex mixing). The sample was
checked by NMR at –65 °C but no changes were detected. Then
the sample was kept in a 0 °C (ice/water) for 3 hours and checked
again by NMR at –65 °C. However, still no changes occurred (sam-
ple was deep green). In an attempt to observe the dimerization step
directly by NMR, a tiny amount of 14a was added to the superacid
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratch-
ian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dap-
prich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.
Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayak-
kara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision
E.01, Gaussian, Inc., Wallingford CT, 2004.
+
solution of 14aH while at 0 °C, but no noticeable changes could
1
be seen via H NMR at –65 °C.
Protonation of 12c: In a 5-mm NMR tube, 10 mg of a 1:1 mixture
of cyclized 12c and BcPh was introduced. The NMR tube was then
flushed with argon, cooled to –78 °C and about 0.3 mL of SO
was condensed into it. After completion of SO ClF addition, 3–4
drops of FSO H were slowly added in order to avoid local over-
heating. The mixture immediately turned deep-blue. After vigorous
stirring at –78 °C (vortex), 6–8 drops of CD Cl were slowly intro-
2
ClF
2
3
2
2
[
15] K. K. Laali, T. Okazaki, P. E. Hansen, J. Org. Chem. 2000, 65,
816–3828.
16] M. Sarobe, L. W. Jenneskens, J. Wesseling, U. E. Wiersum, J.
duced into the NMR tube (vortex mixing) and the sample was
3
+
studied by NMR at –65 °C. Only resonances due to 12cH were
[
[10]
observed. As shown previously,
protonated BcPh can not be
Chem. Soc., Perkin Trans. 2, 1997, 703–708.
[17] M. Sarobe, H. C. Kwint, T. Fleer, R. W. A. Hevenith, L. W.
Jenneskens, E. J. Vlietstra, J. H. Van Lenthe, J. Wesseling, Eur.
J. Org. Chem. 1999, 1191–1200.
generated under persistent ion conditions (likely due to radical
cation formation).
Supporting Information (see also the footnote on the first page
Received: March 6, 2008
of this article): Selected NMR spectra for the products and the
Published Online: June 11, 2008
3708
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 3700–3708