Journal of the American Chemical Society
Article
the selectivity most likely arises from the strains in the Cu
bonds.
Interestingly, the rate-determining steps are different for the
formation of the major and minor diastereomeric products. The
computed barriers suggest that the dual-Cu(I) migration step is
not rate determining for the formation of the major product
(3) (a) Ahlquist, M.; Fokin, V. V. Organometallics 2007, 26, 4389−
4
391. (b) Cheong, P. H.-Y.; Morganelli, P.; Luzung, M. R.; Houk, K.
N.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517−4526. (c) Shao, C.;
Cheong, G.; Su, D.; Xu, J.; Wang, X.; Hu, Y. Adv. Synth. Catal. 2010,
3
52, 1587−1592. (d) Chuang, G. J.; Wang, W.; Lee, E.; Ritter, T. J.
Am. Chem. Soc. 2011, 133, 1760−1762. (e) Martín, M.; Sola, E.;
Tejero, S.; Lop
́
ez, J. A.; Oro, L. A. Chem.Eur. J. 2006, 12, 4057−
068. (f) Johnson, S. A.; Beck, R. Chem. Commun. 2011, 47, 9233−
235. (g) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am.
(
i.e., the necessity of two Cu(I)-catalysts for this transformation
4
9
is kinetically traceless), but it is in the minor product pathway.
While the existence of d-orbitals and the possibility of other
intervening mechanisms complicate the extension of Wood-
Chem. Soc. 2006, 128, 2778−2779. (h) Trost, B. M.; Hitce, J. J. Am.
Chem. Soc. 2009, 131, 4572−4573. (i) Broussard, M. E.; Juma, B.;
Train, S. G.; Peng, W.-J.; Laneman, S. A.; Stanley, G. G. Science 1993,
14
ward−Hoffmann rules to transition-metal-catalyzed reactions,
2
(
2
60, 1784−1788.
4) (a) Sammis, G.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc.
004, 126, 9928−9929. (b) Gu, Z.; Herrmann, A. T.; Zakarian, A.
the failure of the monomeric Cu(I)-catalyzed process is
conspicuously in line with Woodward−Hoffmann rules which
predict a forbidden concerted 1,3-suprafacial sigmatropic
1
5
Angew. Chem., Int. Ed. 2011, 50, 7136−7139. (c) Egi, M.; Yamaguchi,
Y.; Fujiwara, N.; Akai, S. Org. Lett. 2008, 10, 1867−1870. (d) Debleds,
O.; Zotto, C.; Vrancken, E.; Campagne, J.-M.; Retailleau, P. Adv. Synth.
Catal. 2009, 351, 1991−1998. (e) Trost, B. M.; Luan, X.; Miller, Y. J.
Am. Chem. Soc. 2011, 133, 12824−12833. (f) Sabater, S.; Mata, J. A.;
Peris, E. Chemistry 2012, 18, 6380−6385. (g) Hostetler, M. J.;
Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 8621−8623. (h) Wang,
Y.-F.; Toh, K. K.; Lee, J. Y.; Chiba, S. Angew. Chem., Int. Ed. 2011, 50,
shift. We hypothesize that the presence of the second
intervening Cu(I) circumvents the cyclic π-orbital alignment
restrictions of a concerted, thermal pericyclic process and
allows the reaction to proceed.
5. CONCLUSION
In summary, we have used computations and experiments to
elucidate the complete mechanism and origins of the
diastereospecificity of a Cu(I)-catalyzed rearrangement of
vinyloxiranes to dihydrofurans. DFT computations reveal that
an unusual, traceless dual transition-metal-mediated process is
operative. Efforts are underway to capitalize on this milder
synthetic procedure and for the design of new synthetic
processes with improved selectivities based on these discov-
eries.
5
(
1
927−5931.
5) Reviews: (a) Steinhagen, H.; Helmchen, G. Angew. Chem., Int. Ed.
996, 35, 2339−2342. (b) Van den Beuken, E. K.; Feringa, B. L.
Tetrahedron 1998, 54, 12985−13011. (c) Perez-Temprano, M. H.;
́
Casares, J. A.; Espinet, P. Chem.Eur. J. 2012, 18, 1864−1884.
(d) North, M. Angew. Chem., Int. Ed. 2010, 49, 8079−8081. (e) Haak,
R. M.; Wezenberg, S. J.; Kleij, A. W. Chem. Commun. 2010, 46, 2713−
2723. (f) Powers, D. C.; Ritter, T. Acc. Chem. Res. 2012, 45, 840−850.
(
g) Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Acc. Chem.
Res. 2009, 42, 1117−1127. (h) Hirner, J. J.; Shi, Y.; Blum, S. A. Acc.
Chem. Res. 2011, 44, 603−613.
ASSOCIATED CONTENT
Supporting Information
■
(6) (a) Brichacek, M.; Batory, L. A.; Njardarson, J. T. Angew. Chem.,
*
S
Int. Ed. 2010, 49, 1648−1651. (b) Batory, L. A.; McInnis, C. E.;
Njardarson, J. T. J. Am. Chem. Soc. 2006, 128, 16054−16055.
(7) See Supporting Information.
Cartesian coordinates, energies, and reaction coordinate
diagrams. Detailed explanation of relative energies between
monomeric and dual copper species also included. This
(8) (a) Jakubowski, W.; Matyjaszewski, K. Macromolecules 2005, 38,
4
8
(
139−4146. (b) Connelly, R. G.; Geiger, W. E. Chem. Rev. 1996, 96,
77−910.
9) Mack, D. J.; Njardarson, J. T. Chem. Sci. 2012, 3, 3321−3325.
10) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652. (b) Lee,
(
AUTHOR INFORMATION
̈
C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785−789. (c) Schafer,
A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571−2577.
(d) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Chem. Phys.
Lett. 1989, 162, 165. (e) The PyMOL Molecular Graphics System,
version 1.3; Schrodinger, LLC.
11) The Z-cis/trans substrates afford ketones as the major product,
̈
̈
̈
Notes
̈
The authors declare no competing financial interest.
(
as a result of a competing hydride shift mechanism.
(12) Conversion between monomeric and dual copper species is
shown in the Supporting Information.
(13) For the unsubstituted VO the suprafacial Cu migration is
stepwise. Cu attacks the allyl, forming a tricyclic intermediate followed
by Cu-allyl dissociation to form the metalaoxinane intermediate. In
contrast, the antarafacial copper migration is concerted. See
Supporting Information.
ACKNOWLEDGMENTS
We thank the NSF (CHE-0848324 to J.T.N.) and Oregon State
University (P.H.Y.C.) for financial support.
■
REFERENCES
■
(
1) (a) De, C.; Klauber, E. J. Am. Chem. Soc. 2009, 131, 17060−
7061. (b) Rahaman, H.; Madaras
1
́
z, A.; Pap
́
ai, I.; Pihko, P. M. Angew.
(14) Some representative examples: (a) Pettit, R.; Sugahara, H.;
Chem., Int. Ed. 2011, 50, 6123−6127. (c) De, C. K.; Mittal, N.; Seidel,
D. J. Am. Chem. Soc. 2011, 133, 16802−16805. (d) Burns, N. Z.;
Witten, M. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 14578−
4581. (e) Pierce, M. D.; Johnston, R. C.; Mahapatra, S.; Yang, H.;
Carter, R. G.; Cheong, P. H.-Y. J. Am. Chem. Soc. 2012, 134, 13624−
3631.
2) (a) Maeda, H.; Yamada, S.; Itoh, H.; Hori, Y. Chem. Commun.
012, 48, 1772−1774. (b) Dirocco, D. A.; Rovis, T. J. Am. Chem. Soc.
012, 134, 8094−8097. (c) Rueping, M.; Vila, C.; Koenigs, R. M.;
Wristers, J.; Merk, W. Discuss. Faraday Soc. 1969, 47, 71−78.
(
1
9
b) Tantillo, D. J.; Hoffmann, R. Helv. Chim. Acta 2001, 84, 1396−
404. (c) Tantillo, D. J.; Hoffmann, R. J. Am. Chem. Soc. 2001, 123,
855−9859. (d) Tantillo, D. J.; Carpenter, B. K.; Hoffmann, R.
1
Organometallics 2001, 20, 4562−4564.
1
(
2
2
(15) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital
Symmetry; Academic Press: New York, N.Y., 1970.
Poscharny, K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360−2362.
d) Rueping, M.; Antonchick, A. Angew. Chem., Int. Ed. 2007, 46,
903−6906.
(
6
E
dx.doi.org/10.1021/ja310065z | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX