Pd-Catalyzed C–N Bond Activation: Synthesis of β-Amino Acid Derivatives
tification of products, some were purified by preparative TLC on
silica gel by using light petroleum ether/ethyl acetate as the eluent
1
before H NMR and IR spectroscopy).
Supporting Information (see footnote on the first page of this arti-
cle): Analytical and spectral data for compounds 3a–e.
Acknowledgments
The authors thank the National Natural Science Foundation of
China (Nos. 20332030, 20572027 and 20625205) for financial sup-
port of this work.
[
1] a) J. Tsuji, Palladium Reagents and Catalysts, John Wiley,
Chichester, UK, 1995; b) J. F. Hartwig, Angew. Chem. Int. Ed.
1998, 37, 2046–2067; c) E. Negishi, Handbook of Organopallad-
ium Chemistry for Organic Synthesis, John Wiley & Sons, New
York, 2002; d) M. Miwako, J. Organomet. Chem. 2004, 689,
4
4
210–4227; e) G. Zeni, R. C. Larock, Chem. Rev. 2006, 106,
644–4680.
Scheme 1.
[
[
[
2] a) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc.
2005, 127, 7690–7691; b) Streuff, C. H. Hovelmann, M. Nieger,
K. Muniz, J. Am. Chem. Soc. 2005, 127, 14586–14587; c) J. G.
Liu, S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 7179–7181.
3] a) A. M. Trzeciak, Z. Ciunik, J. J. Zioikowski, Organometallics
Conclusions
2
002, 21, 132–137; b) T. Hosokawa, T. Kamiike, S.-I. Murah-
ashi, M. Shimada, T. Sugafuji, Tetrahedron Lett. 2002, 43,
323–9325.
4] a) L. Q. Jia, H. F. Jiang, J. H. Li, Chem. Commun. 1999, 985–
86; b) Z. Y. Wang, H. F. Jiang, C. R. Qi, Y. G. Wang, Y. S.
The palladium-catalyzed C–N bond activation and sub-
sequent new C–N bond formation, which was illustrated
with the reaction of terminal olefins with electron-with-
drawing groups, such as acrylate esters, acrylonitrile and
acrylamide, could be carried out smoothly with efficiency.
This methodology will provide the simplest and most effec-
tive way to construct β-amino acids and their derivatives.
9
9
Dong, H. L. Liu, Green Chem. 2005, 7, 582–585; c) Z. Y. Wang,
H. F. Jiang, X. Y. Ouyang, C. R. Qi, S. R. Yang, Tetrahedron
2
006, 62, 9846–9854; d) H. F. Jiang, Y. X. Shen, Z. Y. Wang, a
report of the acetalization in the presence of molecular oxygen
is soon to be submitted to Tetrahedron.
[
5] For review, see: C. N. C. Drey in Chemistry and Biochemistry
of the Amino Acids (Ed.: G. C. Barrett), Chapman and Hall,
London, 1985.
Experimental Section
[
6] D. M. Shen, Bioorg. Med. Chem. Lett. 2004, 14, 941–945.
7] M. C. Wani, H. L. Tarlor, M. E. Wall, J. Am. Chem. Soc. 1971,
93, 2325–2327.
1
General: H NMR spectra were recorded with a Bruker DRX-400
[
spectrometer with TMS as an internal standard. GC analyses were
performed with a GC-930 chromatograph (Shanghai Haixian
Chromatograph Instrument Ltd. Co.) with a flame ionization de-
tector equipped with an OV-101 capillary column (internal dia-
meter = 0.25 mm, length = 30 m). Mass spectra were recorded with
a Shimadzu GC-MS-QP5050A at an ionization voltage of 70 eV
equipped with a DB-WAX capillary column (internal diameter =
[8] For review, see: a) E. Juaristi, Enantioselective Synthesis of β-
Amino Acids, Wiley-VCH, New York, 1997; b) E. Juaristi, V. A.
Soloshonok, Enantioselective Synthesis of β-Amino Acids, 2nd
ed., John Wiley & Sons, 2005.
9] a) F. Y. Zhao, Y. Ikushima, M. Chatterjee, M. Shirai, M. Arai,
Green Chem. 2003, 5, 76–79; b) M. Shi, Y. Chen, B. Xu, J.
Tang, Green Chem. 2003, 5, 85–88; c) L. N. He, H. Yasuda, T.
Sakakura, Green Chem. 2003, 5, 92–94; d) J. Kobayashi, Y.
Mori, S. Kobayashi, Chem. Commun. 2005, 2567–2568; e) Y.
Du, F. Cai, D. L. Kong, L. N. He, Green Chem. 2005, 7, 518–
523.
[
0.25 mm, length = 30 m). IR spectra were recorded with an Analect
RFX-65A spectrometer. All acrylate esters, acrylonitrile, styrene,
acrylamide, methyl but-2-enoate, methanol, ethanol, palladium
chloride, acetone and acetic acid etc., were commercially purchased
and used without further purification.
2
[10] For discussions of the advantages of scCO , see: a) J. W.
Rathke, R. J. Klinger, T. R. Krause, Organometallics 1991, 10,
Typical Procedure for the PdCl
amine and Methyl Acrylate in scCO
in a HF–25 autoclave. The PdCl
2
-Catalyzed Reaction of Triethyl-
: All reactions were carried out
catalyst (0.15 mmol, 3 mol-%),
1
350–1355; b) P. G. Jessop, T. Ikariya, R. Noyori, Nature 1994,
2
368, 231–236; c) M. J. Burk, S. Feng, M. F. Gross, W. Tumas,
2
J. Am. Chem. Soc. 1995, 117, 8277–8278; d) M. Poliakoff, S.
Howdle, Chem. Ber. 1995, 31, 118; e) D. A. Morgenstem, R. M.
LeLacheur, D. K. Morita, S. L. Borokowsky, S. Feng, G. H.
Brown, L. Luan, M. F. Gross, M. J. Burk, W. Tumas, ACS
Symp. Ser. 1996, 626, 132; f) M. A. Carroll, A. B. Holmes,
Chem. Commun. 1998, 1395–1396; g) K. M. David, R. P. Da-
vid, A. D. Scott, H. G. William, T. William, Chem. Commun.
MeOH (2 mL), triethylamine (10 mmol), acetic acid (5 mmol) and
methyl acrylate (5 mmol) were added into a 25-mL autoclave in
sequence. Liquid CO was pumped into the autoclave by using a
2
cooling pump to reach the desired pressure; the autoclave was then
put into an oil bath under magnetic stirring for the desired reaction
time. After completion of the reaction, the autoclave was cooled to
1
998, 1397–1398; h) P. G. Jessop, T. Ikariya, R. Noyori, Chem.
Rev. 1999, 99, 475–494; i) H.-F. Jiang, Curr. Org. Chem. 2005,
, 289–297.
2
–30 °C. CO was vented and the surplus was extracted with n-hex-
ane or petroleum ether. The extract was filtered and condensed
under reduced pressure. The product was analyzed by GC (quanti-
9
[11] A. Baiker, Chem. Rev. 1999, 99, 453–473.
[12] A. D. Jawwad, P. Martyn, Chem. Rev. 1999, 99, 495–541.
1
tative) and GC–MS, H NMR and IR spectroscopic analysis (iden-
Eur. J. Org. Chem. 2007, 4600–4604
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4603