Ismail et al.
coordination numbers, each lanthanide ion can be used as a
linker to one or more other lacunary POM units. This
approach has resulted in polymeric or unusually large
molecular POM assemblies.4 Also, lanthanide-containing
POMs can be of interest because of photoluminescence, as
well as catalytic, electrochemical, and magnetic properties.5
Our group has also been working on lanthanide-containing
heteropolytungstates. We have reported the ytterbium-
containing tungstoarsenate [YbAs2W20O68(H2O)3]7- resulting
from the interaction of the monolacunary [As2W20O68-
(H2O)]10- with Yb3+ ions in acidic aqueous medium. The
polyanion consists of two (R-AsIIIW9O33) fragments con-
nected by a V-shaped (H2O)Yb(OW(H2O))2 fragment.4j The
monolanthanide-containing polyanion family [Ln(ꢀ2-
SiW11O39)2]13- (Ln ) La, Ce, Sm, Eu, Gd, Tb, Yb, Lu) has
also been synthesized and structurally characterized. These
polyanions are composed of two chiral (ꢀ2-SiW11O39) units
sandwiching the Ln3+ ion.4s Recently, we reported the 20
[Ln(W5O18)2]n-.4a,6 This polyanion is now known for Ln3+
) La, Ce, Pr, Nd, Sm, Ho, Yb, and Y, and also for Ce4+, all
synthesized by reaction of the lanthanide ions with Na2WO4
in hot aqueous (pH 6.5-7.5) solution. The structure of the
D4d [Ln(W5O18)2]n- polyanions consist of two monolacunary
Lindqvist based fragments [W5O18]6- encapsulating a central
metal ion exhibiting a square-antiprismatic coordination.
Yamase et al. reported the crystal structures of the Pr, Nd,
Dy, Sm, Eu, Gd, and Tb derivatives with different types of
alkali counter cations.7 The lanthanum analogue
[La(W5O18)2]9- was reported in 2005,8 and also the actinide
analogues [Th(W5O18)2]8- and [U(W5O18)2]8- have been
studied crystallographically.5b,9 Very recently our group
reported on the synthesis and solid state structure of the
yttrium-derivative [YW10O36]9-, as well as its solution
properties by 183W and 89Y NMR.10 Very recently, Cao and
co-workers reported on a pentadecatungstate ring capped by
two Ce3+ ions.11
cerium containing 100-tungsto-10-germanate [Ce20Ge10W100
-
The isopolyanion family [LnIIIW10O36]9- (Ln ) Pr, Nd,
Sm, Eu, Tb, Dy) has shown high luminescence quantum
efficiency.12 The decatungstoterbate [Tb(W5O18)2]9- showed
green-emissive luminescence.7h Furthermore, Griffith
and co-workers studied the lanthanoisopolytungstates
[LnIIIW10O36]9- (Ln ) Y, La, Ce, Pr, Sm, Eu, Gd, Dy, Er,
Lu) as calalytic oxidants with H2O2 for alcohol oxidations
and alkene epoxidations.5b This provides an impetus to
prepare other, novel isopolyanion structures coordinated to
lanthanide ions.
O376(OH)4(H2O)30]56- which is the third largest molecular
polytungstate known to date.4t We synthesized this polyanion
by reaction of the trilacunary POM precursor
[R-GeW9O34]10- with Ce3+ ions in acidic aqueous medium.
Until very recently, only one family of lanthanide-
containing isopolyanions had been reported. Peacock and
Weakley were the first to describe the sandwich-type
decatungstate
family
of
the
general
formula
Herein we report on the synthesis of a novel class of 22-
isopolytungstates {W22} coordinated to two external lan-
thanide ions, [Ln2(H2O)10W22O71(OH)2]8- (Ln3+ ) La (1),
Ce (2), Tb (3), Dy (4), Ho (5), Er (6), Tm (7), Yb (8), Lu
(9)) and yttrium, [Y2(H2O)10W22O71(OH)2]8- (10).
(4) (a) Peacock, R. D.; Weakley, T. J. R. J. Chem. Soc. A 1971, 1836. (b)
Dickman, M. H.; Gama, G. J.; Kim, K-C.; Pope, M. T. J. Cluster Sci.
1996, 7, 567. (c) Wassermann, K.; Dickman, M. H.; Pope, M. T.
Angew. Chem., Int. Ed. Engl. 1997, 36, 1445. (d) Sadakane, M.;
Dickman, M. H.; Pope, M. T. Angew. Chem., Int. Ed. 2000, 39, 2914.
(e) Sadakane, M.; Dickman, M. H.; Pope, M. T. Inorg. Chem. 2001,
40, 2715. (f) Luo, Q. H.; Howell, R. C.; Dankova, M.; Bartis, J.;
Williams, C. W.; Horrocks, W. D.; Young, V. G.; Rheingold, A. L.;
Francesconi, L. C. Inorg. Chem. 2001, 40, 1894. (g) Xue, G. L.;
Vaissermann, J.; Gouzerh, P. J. Cluster Sci. 2002, 13, 409. (h) Luo,
Q. H.; Howell, R. C.; Bartis, J.; Dankova, M.; Horrocks, W. D.;
Rheingold, A. L.; Francesconi, L. C. Inorg. Chem. 2002, 41, 6112.
(i) Kortz, U. J. Cluster Sci. 2003, 14, 205. (j) Kortz, U.; Holzapfel,
C.; Reicke, M. J. Mol. Struct. 2003, 656, 93. (k) Mialane, P.; Lisnard,
L.; Mallard, A.; Marrot, J.; Antic-Fidancev, E.; Aschehoug, P.; Vivien,
D.; Se´cheresse, F. Inorg. Chem. 2003, 42, 2102. (l) Li, F.; Xu, L.;
Wei, Y.; Gao, G.; Fan, L.; Li, Z. Inorg. Chim. Acta 2006, 359, 3799.
(m) Lu, Y.; Li, Y.; Wang, E.; Xe, X.; Ma, Y. Inorg. Chim. Acta 2006,
360, 2063. (n) Howell, R. C.; Perez, F. G.; Jain, S., Jr.; Rheingold,
A. L.; Francesconi, L. C. Angew. Chem., Int. Ed. Engl. 2001, 40, 4031.
(o) Xue, G. L.; Vaissermann, J.; Gouzerh, P. J. Cluster Sci. 2002, 13,
409. (p) Fukaya, K.; Yamase, T. Angew. Chem., Int. Ed. 2003, 42,
654. (q) Zimmermann, M.; Belai, N.; Butcher, R. J.; Pope, M. T.;
Chubarova, E. V.; Dickman, M. H.; Kortz, U. Inorg. Chem. 2007,
46, 1737. (r) Merca, A.; Mu¨ller, A.; van Slageren, J.; La¨ge, M.; Krebs,
B. J. Cluster Sci. 2007, 16, 711. (s) Bassil, B. S.; Dickman, M. H.;
Kammer, B.; Kortz, U. Inorg. Chem. 2007, 46, 2452. (t) Bassil, B. S.;
Dickman, M. H.; Ro¨mer, I.; Kammer, B.; Kortz, U. Angew. Chem.,
Int. Ed. 2007, 46, 6192. (u) Fang, X.; Ko¨gerler, P. Chem. Commun.
2008, 3396.
(5) (a) Gresely, M. M.; Griffith, W. P.; La¨mmel, A. C.; Nogueira, H. I. S.;
Parkin, B. C. J. Mol. Catal. A: Chem. 1997, 117, 185. (b) Griffith,
W. P.; Morley-Smith, N.; Nogueira, H. I. S.; Shoair, A. G. F.;
Suriaatmaja, M.; White, A. J. P.; Williams, D. J. J. Organomet. Chem.
2000, 607, 146. (c) Ferna´ndez, J. A.; Lo´pez, X.; Bo, C.; de Graaf, C.;
Baerend, E. J.; Poblet, J. M. J. Am. Chem. Soc. 2005, 129, 12244. (d)
Chen, W.; Li, Y.; Wang, Y.; Wang, E.; Su, Z. J. Chem. Soc., Dalton
Trans. 2007, (41), 4293. (e) Li, F.; Xu, L.; Wei, Y.; Gao, G.; Fan, L.;
Li, Z. Inorg. Chim. Acta 2006, 359, 3799. (f) Huang, W.; Francesconi,
L. C.; Plenova, T. Inorg. Chem. 2007, 43, 7861. (g) Merca, A.; Mu¨ller,
A.; van Slageren, J.; La¨ge, M.; Krebs, B. J. Cluster Sci. 2007, 16,
711.
Experimental Section
Synthesis. We used all reagent-grade chemicals as purchased
without further purification.
Na2La2[La2(H2O)10W22O72(OH)2]·44H2O (NaLa-1). A sample
of 10.00 g of Na2WO4 ·2H2O (30.3 mmol) was dissolved in 20 mL
H2O, followed by dropwise addition of a solution of 1.02 g of
LaCl3 ·7H2O (2.8 mmol) in 5 mL of H2O. Then 2.5 mL of 12 M
(6) Iball, J.; Low, J. N.; Weakley, T. J. R. J. Chem. Soc., Dalton Trans.
1974, 2021.
(7) (a) Ozeki, T.; Takahashi, M.; Zeki, T.; Takahashi, M.; Yamase, T.
Acta Crystallogr. 1992, C48, 1370. (b) Ozeki, T.; Yamase, T. Acta
Crystallogr. 1994, B50, 128. (c) Ozeki, T.; Yamase, T. Acta Crys-
tallogr. 1993, C49, 1574. (d) Ozeki, T.; Yamase, T. Acta Crystallogr.
1994, C50, 327. (e) Yamase, T.; Ozeki, T.; Ueda, K. Acta Crystallogr.
1993, C49, 1572. (f) Yamase, T.; Ozeki, T. Acta Crystallogr. 1993,
C49, 1577. (g) Yamase, T.; Ozeki, T.; Tosaka, M. Acta Crystallogr.
1994, C50, 1849. (h) Ozeki, T.; Takahashi, M.; Yamase, T. Acta
Crystallogr. 1992, C48, 1370. (i) Yamase, T.; Naruke, H.; Sasaki, Y.
J. Chem. Soc., Dalton Trans. 1990, 1687.
(8) Almeida Paz, F. A.; Balula, M. S. S.; Cavaleiro, A. M. V.; Klinowski,
J.; Nogueira, H. I. S. Acta Crystallogr. 2005, E61, 1370.
(9) Golubev, A. M.; Kazanskii, L. P.; Torchenkova, E. A.; Simonov, V. I.;
Spitsyn, V. I. Dokl. Acad. Nauk. 1975, 221, 351.
(10) Barsukova, M.; Dickman, M. H.; Visser, E.; Mal, S. S.; Kortz, U. Z.
Anorg. Allg. Chem. 2008, 634, 2423.
(11) Li, T.; Li, F.; Lu¨, J.; Guo, Z.; Gao, S.; Cao, R. Inorg. Chem. 2008,
47, 5612.
(12) (a) Stillman, M. J.; Thomson, A. J. J. Chem. Soc., Dalton Trans. 1976,
1138. (b) Blasse, G.; Dirksen, G.; Zonnevulle, F. Chem. Phys. Lett.
1981, 83, 449.
1560 Inorganic Chemistry, Vol. 48, No. 4, 2009