C O M M U N I C A T I O N S
the Au(111) surface. The ellipsometric thickness of the resulting
film, measured at multiple spots on the substrate, was 20.5 ( 2.4
Å. This value is consistent with the molecular monolayer nature
of the self-assembled film featuring approximately parallel orienta-
tion of the long molecular axis of 5 with respect to the surface
Bruker AXS for collecting the X-ray diffraction data for 5 and
Professors Malinakova and Tunge for helpful discussions.
Supporting Information Available: Experimental procedures;
spectroscopic and analytical data; details of the electrochemical, X-ray,
surface, and DFT studies (PDF and CIF). This material is available
free of charge via the Internet at http://pubs.acs.org.
5
1
normal. Indeed, for the perfectly upright η coordination of 5 to
the gold surface (Figure 4), the monolayer thickness can be expected
to be approximately 19.1 Å. This estimate is obtained by adding
5
References
2
.0 Å, a typical Au(0)-CNR bond length, to the 17.1 Å distance
(
1) Barybin, M. V. Coord. Chem. ReV. 2010, 254, 1240–1252.
between the two isocyanide carbon atoms in 5 (Figure 1).
The grazing incidence reflection absorption infrared (RAIR) spec-
trum of a freshly prepared film of 5 on Au(111) also suggests the
end-on adsorption of 5 to the Au surface. Indeed, the spectrum exhibits
(
2) (a) Dias, J. R. J. Phys. Org. Chem. 2007, 20, 395–409. (b) Burdzinski, G.;
Kubicki, J.; Maciejewski, A.; Steer, R. P.; Velate, S.; Yeow, E. K. L. Mol.
Supramol. Photochem. 2006, 14, 1–36. (c) van der Veen, M. H.; Rispens,
M. T.; Jonkman, H. T.; Hummelen, J. C. AdV. Funct. Mater. 2004, 14,
2
15–223. (d) Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema,
two bands in the isocyanide stretching region (Figure 4). The higher
E. M. Chem. ReV. 2000, 100, 1789–1816. (e) Treboux, G.; Lapstun, P.;
energy band at 2170 cm-1 corresponds to νCtN of the CtN terminus
Silverbrook, K. J. Phys. Chem. B 1998, 102, 8978–8980.
3) Shevyakov, S. V.; Li, H.; Muthyala, R.; Asato, A. E.; Croney, J. C.;
(
of 5 bound to the gold surface. The broad nature of this band is typical
Jameson, D. M.; Liu, R. S. H. J. Phys. Chem. A 2003, 107, 3295–3299.
22
(4) For a class III mixed-valence species, in which the electronic coupling is
mediated by the 2,6-azulenedicarboxylate bridge, see: Barybin, M. V.;
Chisholm, M. H.; Dalal, N. S.; Holovics, T. H.; Patmore, N. J.; Robinson,
R. E.; Zipse, D. J. J. Am. Chem. Soc. 2005, 127, 15182–15190.
for aryl isocyanide self-assembled monolayers (SAMs) on gold and
can be attributed to some inhomogeneity in the environment of the
surface adsorption sites due to defects in the Au(111) film prepared
(
5) Lazar, M.; Angelici, R. J. Isocyanide Binding Modes on Metal Surfaces
and in Metal Complexes. In Modern Surface Organometallic Chemistry;
Basset, J.-M., Psaro, R., Roberto, D., Ugo, R., Eds.; Wiley-VCH: Weinheim,
23
via gold vapor deposition. Notably, the νCtN stretch for SAMs of 1
-1
9
on Au(111) also occurs at 2170 cm . Since the isocyanide carbon’s
2
009; pp 513-556 and references therein.
1
lone pair is antibonding with respect to the CtN bond, donation of
(6) Selected recent theoretical reports: (a) Li, Y.; Lu, D.; Galli, G. J. Chem.
Theory Comput. 2009, 5, 881–886. (b) Li, Y.; Lu, D.; Swanson, S. A.;
Scott, J. C.; Galli, G. J. Phys. Chem. C 2008, 112, 6413–6421.
electron density from the sNC junction to gold upon chemisorption
-1
of 5 results in a pronounced (43 cm ) blue shift in νCN for the gold-
bonded isocyanide terminus of 5 relative to that of the compound in
solution. Concurrently, such coordination should induce a slight
(
7) Representative examples: (a) Choi, S. H.; Kim, B.; Frisbie, C. D. Science
008, 320, 1482–1486. (b) Chu, C.; Ayres, J. A.; Stefanescu, D. M.; Walker,
B. R.; Gorman, C. B.; Parsons, G. N. J. Phys. Chem. C 2007, 111, 8080–
085. (c) Kim, B.; Beebe, J. M.; Jun, Y.; Zhu, X.-Y.; Frisbie, C. D. J. Am.
2
8
7e
positive charge within the π-system of 5, which may lead to
weakening of the CtN bond of the unbound isocyanide group,
provided there is a sufficient extent of conjugation between the two
azulenyl moieties. In accord with this argument, the sharp νCtN band
at 2119 cm- in the RAIR spectrum in Figure 4 that corresponds
Chem. Soc. 2006, 128, 4970–4971. (d) Murphy, K. L.; Tysoe, W. T.;
Bennett, D. W. Langmuir 2004, 20, 1732–1738. (e) Hong, S.; Reifenberger,
R.; Tian, W.; Datta, S.; Henderson, J.; Kubiak, C. P. Superlattices
Microstruct. 2000, 28, 289–303.
8) Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.;
Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300–
2309.
(
1
-1
(9) DuBose, D. L.; Robinson, R. E.; Holovics, T. C.; Moody, D.; Weintrob,
E. C.; Berrie, C. L.; Barybin, M. V. Langmuir 2006, 22, 4599–4606.
(10) (a) Ito, S.; Terazono, T.; Kubo, T.; Okujima, T.; Morita, N.; Murafuji, T.;
Sugihara, Y.; Fujimori, K.; Kawakami, J.; Tajiri, A. Tetrahedron 2004,
to the uncoordinated sNtC end of 5 is depressed by 8 cm relative
2 2
to νCtN observed for 5 in CH Cl
solution (or by 11 cm- compared
1
to νCtN for the bulk compound in Nujol mull). Interestingly, when
6
0, 5357–5366. (b) Ito, S.; Okujima, T.; Morita, N. J. Chem. Soc., Perkin
adsorbed on metallic gold, linear benzenoid diisocyanoarenes featuring
Trans. 1 2002, 1896–1905. (c) Kurotobi, K.; Tabata, H.; Miyauchi, M.;
Murafuji, T.; Sugihara, Y. Synthesis 2002, 1013–1016. (d) Morita, T.;
Takase, K. Bull. Chem. Soc. Jpn. 1982, 55, 1144–1152. (e) Hanke, M.;
Jutz, C. Synthesis 1980, 31–32.
up to three linked arylene units show 2-9 cm-1 red shifts in νCN for
their free sNtC end relative to νCN for the corresponding bulk
22b,d
(
11) The X-ray structure of a diazuleno[2,1-a:1,2-c]naphthalene derivative, which
formally contains the 1,1′-biazulenyl motif has been reported: Ito, S.;
Nomura, A.; Morita, N.; Kabuto, C.; Kobayashi, H.; Maejima, S.; Fujimori,
K.; Yasunami, M. J. Org. Chem. 2002, 67, 7295–7302.
12) A small amount of an orange-brown mixture isolated after workup in this
control experiment contained 1,3-diethoxycarbonyl-2-aminoazulene (the
product of debromination of 2) as one of the major constituents.
13) Representative examples: (a) Nising, C. F.; Schmid, U. K.; Nieger, M.;
Br a¨ se, S. J. Org. Chem. 2004, 69, 6830–6833. (b) Kabalka, G. W.; Yao,
M.-L. Tetrahedron Lett. 2003, 44, 7885–7887.
substances.
(
(
(
14) For 3, the S
substantially more intense S
15) Bock, H.; Arad, C.; N a¨ ther, C.; G o¨ bel, I. HelV. Chim. Acta 1996, 79, 92–
0
fS
1
band is likely obscured by the lower energy tail of the
0
fS transition at λmax ) 459 nm.
2
(
1
00.
(
(
(
16) Robertson, G. B. Nature 1961, 593–594.
17) Trotter, J. Acta Crystallogr. 1961, 14, 1135–1140.
18) (a) Johansson, M. P.; Olsen, J. J. Chem. Theory Comput. 2008, 4, 1460–
1
471. (b) Bastiansen, O.; Samdal, S. J. Mol. Struct. 1985, 128, 115–125.
1
Figure 4. Left: schematic drawing of the terminal upright (η ) bonding of
to the gold surface. Right: νCtN regions of (A) FTIR spectrum of 5 in
CH Cl solution and (B) RAIR spectrum of a SAM film of 5 on Au(111).
(19) (a) H u¨ nig, S.; Ort, B. Liebigs Ann. Chem. 1984, 1905–1935. (b) H u¨ nig, S.;
Ort, B. Liebigs Ann. Chem. 1984, 1936–1951. (c) H u¨ nig, S.; Ort, B.; Hanke,
M.; Jutz, C.; Morita, T.; Takase, K.; Fukazawa, Y.; Aoyagi, M.; Ito, S.
Liebigs Ann. Chem. 1984, 1952–1958. (d) H u¨ nig, S.; Ort, B. Liebigs Ann.
Chem. 1984, 1959–1971.
(20) Ito, S.; Okujima, T.; Morita, N.; Ohta, K.; Kitamura, T.; Imafuku, K. J. Am.
Chem. Soc. 2003, 125, 1669–1680.
5
2
2
The SAM of 5 described herein constitutes the first example of
a molecular film involving a biazulenic scaffold. Accessibility of
such SAMs presents a hitherto unavailable intriguing opportunity
(
21) Grubisha, D. S.; Rommel, J. S.; Lane, T. M.; Tysoe, W. T.; Bennett, D. W.
Inorg. Chem. 1992, 31, 5022–5027.
7
(22) (a) Toriyama, M.; Maher, T. R.; Holovics, T. C.; Vanka, K.; Day, V. W.;
Berrie, C. L.; Thompson, W. H.; Barybin, M. V. Inorg. Chem. 2008, 47,
to experimentally probe the conductivity characteristics of a 6,6′-
biazulenyl-based molecular wire. Further studies advancing the
coordination and surface chemistry of the 6,6′-biazulenyl and 6,6′-
biazulenide frameworks are underway in our laboratory.
3
284–3291. (b) Swanson, S. A.; McClain, R.; Lovejoy, K. S.; Alamdari,
N. B.; Hamilton, J. S.; Scott, J. C. Langmuir 2005, 21, 5034–5039. (c)
Stapleton, J. J.; Daniel, T. A.; Uppili, S.; Cabarcos, O. M.; Naciri, J.;
Shashidhar, R.; Allara, D. L. Langmuir 2005, 21, 11061–11070. (d)
Henderson, J. I.; Feng, S.; Bein, T.; Kubiak, C. P. Langmuir 2000, 16,
6183–6187.
Acknowledgment. This work was supported by the NSF
CAREER Award (CHE-0548212) and DuPont Young Professor
Award to M.V.B. The authors thank Dr. Matthew Benning of
(23) Lazar, M.; Angelici, R. J. J. Am. Chem. Soc. 2006, 128, 10613–10620.
JA108202D
1
5926 J. AM. CHEM. SOC. 9 VOL. 132, NO. 45, 2010