6782
X.-d. Jia et al. / Tetrahedron Letters 51 (2010) 6779–6782
Batey, R. A.; Powell, D. A.; Acton, A.; Lough, A. J. Tetrahedron Lett. 2001, 42,
133.0, 143.9, 144.9; EI-MS m/z (relative intensity, %): 398 (0.7%), 396 (1.5%),
394 (0.8%), 226 (29.0%), 224 (45.5%), 210 (86.9%), 208 (94.4%), 173 (89.5%), 171
(85.1%), 145 (19.4%), 143 (24.8%), 129 (57.9%), 65 (100%); ESI-HRMS: m/z calcd
for C16H14N2Br2+H: 392.9597, found: 392.9603. syn-3d: 1H NMR (300 MHz,
CDCl3): d 1.22 (d, J = 6.3 Hz, 3H), 1.45 (q, J = 11.7 Hz, 1H), 2.31 (ddd, J = 2.1, 5.1,
12.9 Hz, 1H), 3.58 (ddd, J = 2.4, 5.7, 11.1 Hz, 1H), 3.78 (br, NH, 2H), 4.70 (dd,
J = 5.4, 11.1 Hz, 1H), 6.38 (d, J = 9.0 Hz, 1H), 6.55 (d, J = 9.0 Hz, 2H), 7.11 (dd,
J = 2.4, 8.4 Hz, 1H), 7.25–7.30 (m, 2H), 7.43 (s, 1H); 13C NMR (100.6 MHz,
CDCl3): d 22.2, 37.1, 46.9, 50.2, 109.0, 114.7, 115.5, 124.6, 129.6, 130.9, 132.1,
143.8, 146.4, one 13C signal lost for overlap; EI-MS m/z (relative intensity, %):
398 (1.6%), 396 (3.1%), 394 (1.6%), 226 (66.0%), 224 (77.1%), 210 (100%), 208
(91.6%), 173 (82.7%), 171 (85.2%); ESI-HRMS: m/z calcd for C16H14N2Br2+H:
392.9597, found: 392.9601.
7935–7939; (d) Batey, R. A.; Simoncic, P. D.; Lin, D.; Smyj, R. P.; Lough, A. J.
Chem. Commun. 1999, 651–652; (e) Zhang, J.; Li, C.-J. J. Org. Chem. 2002, 67,
3969–3971; (f) Powell, D. A.; Batey, R. A. Org. Lett. 2002, 4, 2913–2916; (g)
Powell, D. A.; Batey, R. A. Tetrahedron Lett. 2003, 44, 7569–7573.
4. This process is known as Doebner–von Miller reaction. Refs see: (a) Turner, A.
B.; McBain, B. I.; Howie, R. A.; Cox, P. J. J. Chem. Soc., Perkin Trans. 1 1986, 1151–
1155; (b) Westerwelle, U.; Keuper, R.; Risch, N. J. Org. Chem. 1995, 60, 2263–
2266; (c) Talukdar, S.; Chen, C.-T.; Fang, J.-M. J. Org. Chem. 2000, 65, 3148–
3153; (d) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1995, 60, 7631–
7640.
5. (a) Bauld, N. L. Tetrahedron 1989, 45, 5307–5363; (b) Schmittel, M.; Burghart, A.
Angew. Chem., Int. Ed. 1997, 36, 2550–2589; (c) Nelsen, S. F. Acc. Chem. Res.
1987, 20, 269–276.
8. (a) Gassman, P. G.; Singleton, D. A. J. Am. Chem. Soc. 1984, 106, 6085–6086; (b)
Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473–2474; (c)
Lapouyade, R.; Villeneuve, P.; Nourmamode, A.; Morand, J. P. J. Chem. Soc.,
Chem. Commun. 1987, 776–778; (d) Ciminale, F.; Lopez, L.; Paradiso, V.; Nacci,
A. Tetrahedron 1996, 52, 13971–13980; (e) Ciminale, F.; Lopez, L.; Nacci, A.;
D’Accolti, L.; Vitale, F. Eur. J. Org. Chem. 2005, 70, 1597–1604; (f) Ciminale, F.;
Lopez, L.; Farinola, G. M.; Sportelli, S.; Nacci, A. Eur. J. Org. Chem. 2002, 67,
3850–3854; (g) Ciminale, F.; Lopez, L.; Farinola, G. M.; Sportelli, S. Tetrahedron
Lett. 2001, 42, 5685–5687.
6. (a) Jia, X.-D.; Wang, X.-E.; Yang, C.-X.; Huo, C.-D.; Wang, W.-J.; Ren, Y.; Wang,
X.-C. Org. Lett. 2010, 12, 732–735; (b) Jia, X.-D.; Lin, H.-C.; Huo, C.-D.; Zhang,
W.; Lu, J.-M.; Yang, L.; Zhao, G.-Y.; Liu, Z.-L. Synlett 2003, 1707–1709; (c) Jia, X.-
D.; Han, B.; Zhang, W.; Jin, X.-L.; Yang, L.; Liu, Z.-L. Synthesis 2006, 2831–2836;
(d) Jia, X.-D.; Wang, X.-E.; Yang, C.-X.; Da, Y.; Yang, L.; Liu, Z. L. Tetrahedron
2009, 65, 2334–2338; (e) Jia, X.-D.; Da, Y.; Yang, C.; Yang, L.; Liu, Z.-L.
Tetrahedron Lett. 2008, 49, 1786; (f) Huo, C.; Jia, X.; Zhang, W.; Yang, L.; Lu, J.;
Liu, Z. Synlett 2004, 251–254.
7. Representative spectral data of the products. trans-3d: 1H NMR (400 MHz, CDCl3):
d 1.21 (d, J = 5.6 Hz, 3H), 1.50 (t, J = 10.8 Hz, 1H), 2.09 (d, J = 13.2 Hz, 1H), 3.38
(br s, 1H), 3.89 (br, NH, 2H), 4.43 (br s, 1H), 6.43 (d, J = 8.8 Hz, 1H), 6.52 (d,
J = 8.4 Hz, 2H), 7.13 (d, J = 7.6 Hz, 1H), 7.27 (br, 3H); 13C NMR (100.6 MHz,
CDCl3): d 21.8, 34.4, 42.3, 48.6, 108.4, 108.8, 114.2, 116.1, 122.4, 131.4, 132.0,
9. (a) Schmittel, M. Top. Curr. Chem. 1994, 169, 183–230; (b) Schmittel, M.;
Abufarag, A.; Luche, O.; Levis, M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1144–
1146.
10. During the course of reaction, Ar3N, the reduction product of TBPA+Å, was
produced, which suggested that redox reactions occurred.