10.1002/chem.201706087
Chemistry - A European Journal
COMMUNICATION
707; c) T. Takata, K. Hoshino, E. Takeuchi, Y. Tamura, W. Ando,
Tetrahedron Lett. 1984, 25, 4767–4770.
The yield of the double oxygenated products 3a/3’a
increases as the reaction proceeds while the diastereomeric
ratio remains constant throughout the reaction (d.r., 75/25).
Interestingly, the hydroperoxide intermediate 2a was detected in
the reaction mixture from the very start of the reaction and it
reaches a maximum concentration after 1 h. In line with results
of Scheme 2, this observation indicates that photooxygenation of
1a would first lead to the intermediate 2a which would react with
a second equivalent of singlet oxygen to produce 3a and 3’a.
The diastereomers were obtained in 66% NMR yield (3a/3’a,
73/27) and these results were in complete agreement with the
results depicted in Table 1 (entry 6). In addition, careful analyses
of the crude revealed the presence of unidentified aldehydic
side-products at the end of the photooxygenation protocol which
could explain the moderate yields of the process.
[8]
[9]
a) Domino reactions, concepts for efficient organic synthesis, (ed. L. F.
Tietze), Wiley-VCH: Weinheim, Germany, 2014; b) H. Pellissier, Chem.
Rev. 2013, 113, 442–524; c) Tietze, L.F.; Brasche, G.; Gericke, K.M.
Domino Reaction in Organic Synthesis; Wiley-VCH:Weinheim,
Germany, 2006.
a) Y. Altun, S. D. Dogan, M. Balci, Tetrahedron 2014, 70, 4884–4890;
b) A. G. Griesbeck, A. de Kiff, M. Kleczka, Adv. Synth. Catal. 2014, 356,
2839–2845; c) A. Eske, B. Goldfuss, A. G. Griesbeck, A. de Kiff, M.
Kleczka, M. Leven, J.-M. Neudörfl, M. Vollmer, J. Org. Chem. 2014, 79,
1818–1829; d) A. G. Griesbeck, A. de Kiff, Org. Lett. 2013, 15, 2073–
2075; e) N. I. Kurbanoğlu, M. Çelik, H. Kilic, C. Alp, E. Şahin, M. Balci,
Tetrahedron 2010, 66, 3485–3489; f) Ş. D. Yardımcı, N. Kaya, M. Balci,
Org. Chem. Singlet Oxyg. 2006, 62, 10633–10638; g) N. (Horasan)
Kishali, E. Sahin, Y. Kara, Org. Lett. 2006, 8, 1791–1793; h) M. S.
Gültekin, M. Çelik, E. Turkut, C. Tanyeli, M. Balci, Tetrahedron
Asymmetry 2004, 15, 453–456; i) W. Adam, M. Balci, H. Kiliç, J. Org.
Chem. 2000, 65, 5926–5931; j) E. Salamci, H. Seçen, Y. Sütbeyaz, M.
Balci, J. Org. Chem. 1997, 62, 2453–2457; k) H. Seçen, E. Salamci, Y.
Sütbeyaz, M. Balci, Synlett 1993, 1993, 609–610.
In summary, an unprecedented synthesis of six-membered
ring fused furans under mild conditions has been described.
Central to the implementation of the one-pot strategy is the
photosensitized
singlet
oxygen-mediated
phenol
[10] a) M. Klaper, T. Linker, Chem. – Eur. J. 2015, 21, 8569–8577; b) H. A.
J. Carless, R. Atkins, G. K. Fekarurhobo, J Chem Soc Chem Commun
1985, 139–140.
dearomatization followed by a [4+2]-cycloaddition. A reductive
work-up enabled the synthesis of diversely functionalized furans
containing a tetrasubstituted tertiary carbon center. Detailed
mechanistic studies were carried out to get
understanding of the photosensitized domino oxygenation
process.
[11] a) G. Tóth, T. Linker, F. Rebien, Magn. Reson. Chem. 1997, 35, 367–
371; b) T. Linker, F. Rebien, G. Toth, Chem. Commun. 1996, 2585–
2586.
a
better
[12] a) D. Kalaitzakis, D. Noutsias, G. Vassilikogiannakis, Org. Lett. 2015,
17, 3596–3599; b) A. Kouridaki, M. Sofiadis, T. Montagnon, G.
Vassilikogiannakis, Eur. J. Org. Chem. 2015, 2015, 7240–7243; c) K. Y.
Seah, S. J. Macnaughton, J. W. P. Dallimore, J. Robertson, Org. Lett.
2014, 16, 884–887; d) I. Margaros, T. Montagnon, G.
Vassilikogiannakis, Org. Lett. 2007, 9, 5585–5588; e) N. Sofikiti, M. Tofi,
T. Montagnon, G. Vassilikogiannakis, M. Stratakis, Org. Lett. 2005, 7,
2357–2359.
Acknowledgements
We thank University of Nantes and CNRS for financial support.
[13] For other examples of one-pot multiple singlet oxygenations, see: a) A.
Baran, G. Aydin, T. Savran, E. Sahin, M. Balci, Org. Lett. 2013, 15,
4350–4353; b) X. Zhang, F. Lin, C. S. Foote, J. Org. Chem. 1995, 60,
1333–1338; c) H. H. Wasserman, R. W. DeSimone, D. L. Boger, C. M.
Baldino, J. Am. Chem. Soc. 1993, 115, 8457–8458.
Keywords: heterocycles • photochemistry • homogeneous
catalysis • oxidation • synthetic methods.
[1]
[2]
[3]
a) P. R. Ogilby, Chem Soc Rev 2010, 39, 3181–3209; b) M. Zamadar,
A. Greer, in Handbook of Synthetic Photochemistry, Wiley-VCH Verlag
GmbH & Co. KGaA, 2009, pp. 353–386.
[14] For selected examples: a) H. Umihara, T. Yoshino, J. Shimokawa, M.
Kitamura, T. Fukuyama, Angew. Chem. Int. Ed. 2016, 55, 6915–6918;
b) G. Tong, Z. Liu, P. Li, Org. Lett. 2014, 16, 2288–2291; c) K. M.
Jones, T. Hillringhaus, M. Klussmann, Tetrahedron Lett. 2013, 54,
3294–3297; d) T. R. Hoye, C. S. Jeffrey, D. P. Nelson, Org. Lett. 2010,
12, 52–55; e) W. Adam, H. Kιç, C. R. Saha-Möller, Synlett 2007, 2002,
510–512; f) K. Zilbeyaz, E. Sahin, H. Kilic, Tetrahedron Asymmetry
2007, 18, 791–796; g) S. Barradas, M. C. Carreño, M. González-López,
A. Latorre, A. Urbano, Org. Lett. 2007, 9, 5019–5022; h) M. C. Carreño,
M. González-López, A. Urbano, Angew. Chem. Int. Ed. 2006, 45,
2737–2741.
a) S. Nonell, C. Flors, Eds., Singlet Oxygen: Applications in
Biosciences and Nanosciences, The Royal Society Of Chemistry, 2016;
b) S. Lacombe, T. Pigot, Catal. Sci. Technol. 2016, 6, 1571-1592.
For selected reviews: a) A. A. Ghogare, A. Greer, Chem. Rev. 2016,
116, 9994–10034; b) T. Montagnon, D. Kalaitzakis, M. Triantafyllakis, M.
Stratakis, G. Vassilikogiannakis, Chem. Commun. 2014, 50, 15480–
15498; c) D. Ashen-Garry, M. Selke, Photochem. Photobiol. 2014, 90,
257–274; d) T. Montagnon, M. Tofi, G. Vassilikogiannakis, Acc. Chem.
Res. 2008, 41, 1001–1011; e) N. Hoffmann, Chem. Rev. 2008, 108,
1052–1103; f) E. L. Clennan, A. Pace, Tetrahedron 2005, 61, 6665–
6691.
[15] a) A.-S. Marques, V. Coeffard, I. Chataigner, G. Vincent, X. Moreau,
Org. Lett. 2016, 18, 5296–5299; b) L. Pantaine, X. Moreau, V. Coeffard,
C. Greck, Tetrahedron Lett. 2016, 57, 2567–2574; c) L. Pantaine, V.
Coeffard, X. Moreau, C. Greck, Eur. J. Org. Chem. 2015, 2015, 2005–
2011; d) F. Portalier, F. Bourdreux, J. Marrot, X. Moreau, V. Coeffard, C.
Greck, Org. Lett. 2013, 15, 5642–5645.
[4]
[5]
For selected reviews: a) M. N. Alberti, M. Orfanopoulos, Synlett 2010,
2010, 999–1026; b) M. N. Alberti, M. Orfanopoulos, Chem. – Eur. J.
2010, 16, 9414–9421; c) A. Greer, Acc. Chem. Res. 2006, 39, 797–
804; d) E. L. Clennan, Tetrahedron 2000, 56, 9151–9179.
[16] A. Birch, R. Richards, Aust. J. Chem. 1956, 9, 241–243 and references
cited therein.
M. R. Iesce, F. Cermola, in Handbook of Organic Photochemistry and
Photobiology, 3rd ed., (eds: A. Griesbeck, M. Oelgemöller, F. Ghetti),
CRC Press: Boca Raton, FL, 2012, pp 727-764.
[17] W.-J. Wang, L. Wang, X.-J. Huang, R.-W. Jiang, X.-L. Yang, D.-M.
Zhang, W.-M. Chen, B.-Q. Tang, Y. Wang, X.-Q. Zhang, et al.,
Tetrahedron Lett. 2013, 54, 3321–3324.
[6]
[7]
For selected reviews: a) N. Sawwan, A. Greer, Chem. Rev. 2007, 107,
3247–3285; b) E. L. Clennan, Acc. Chem. Res. 2001, 34, 875–884.
a) A. Sagadevan, K. C. Hwang, M.-D. Su, Nat. Commun. 2017, 8,
1812; b) R. O. Duthaler, Angew. Chem. Int. Ed. Engl. 1991, 30, 705–
[18] M. Zhao, M. M. Onakpa, W.-L. Chen, B. D. Santarsiero, S. M. Swanson,
J. E. Burdette, I. U. Asuzu, C.-T. Che, J. Nat. Prod. 2015, 78, 789–796.
[19] A. G. Griesbeck, V. Schlundt, J. M. Neudorfl, RSC Adv 2013, 3, 7265–
7270.
This article is protected by copyright. All rights reserved.