Journal of the American Chemical Society
Page 4 of 6
(1) Selected reports, see: (a) ligand: Aillard, P.; Voituriez, A.; Dova, D.;
transfer to a vanadium(V) species. This is followed by oxidation
of vanadium(IV) by O2 to form an intermediate B. Finally,
intramolecular cyclization assisted by the Lewis acidity of
vanadium(V) affords the desired product 2a and the intermediate
A is regenerated. It is likely that the hydroxy group on the
binaphthyl ligand in the vanadium complex increased the Lewis
acidity of vanadium metal through an intramolecular hydrogen
bond in intermediates A and B. When a racemic quinone
derivative 4a5a was treated with 10 mol% of catalyst (Ra,S)ꢀ14, 2a
was produced in racemic form with 71% conversion; the
remaining 4a was also racemic (Scheme 3). Kinetic resolution
was not observed in the reaction of 4a to yield 2a, which implies
that the enantioꢀdetermining step is the oxidative coupling step of
intermediate A to intermediate B. The quinone 4a might be
outside of the catalytic cycle and in an equilibrium with the
intermediate B. The radicalꢀanion coupling mechanism is also
supported by the fact that the treatment of both of electronꢀrich 1a
(0.02 mmol) and ꢀpoor 1g (0.02 mmol) by (Ra,S)ꢀ14 (0.004 mmol)
afforded a mixture of the oxa[9]helicenes (Scheme 4); heteroꢀ
coupling product 2ag (30% yield, 84% ee) and the homoꢀcoupling
products 2a (28% yield, 69% ee) and 2g (13% yield, 94% ee)
(Scheme 4) though the radical–radical coupling would
preferentially form homoꢀcoupling product 2a.14ꢀ16
Cauteruccio, S.; Licandro, E.; Marinetti, A. Chem. Eur. J. 2014, 20,
12373. (b) auxiliary: Hassine, B. B.; Gorsane, M.; GeertsꢀEvrard, F.;
Pecher, J.; Martin, R. H.; Castelet, D. Bull. Soc. Chim. Belg. 1986,
95, 557. (c) organocatalyst: Hassine, B. B.; Gorsane, M.; Pecher, J.;
Martin, R. H. Bull. Soc. Chim. Belg. 1986, 95, 547. (d) liquid crystal:
Saito, N.; Kanie, K.; Matsubara, M.; Muramatsu, A.; Yamaguchi, M.
J. Am. Chem. Soc. 2015, 137, 6594. (e) Miah, M. J.; Shahabuddin,
M.; Karikomi, M.; Salim, M.; Nasuno, E.; Kato, N.; Iimura, K. Bull.
Chem. Soc. Jpn. 2016, 89, 203. (f) molecular motor: Chen, W.ꢀC.;
Lee, Y.ꢀW.; Chen, C.ꢀT. Org. Lett. 2010, 12, 1472. Recent reviews,
see: (g) Shen, Y.; Chen, C.ꢀF. Chem. Rev. 2012, 112, 1463. (h)
Gingras, M. Chem. Soc. Rev. 2013, 42, 1051. (i) Aillard, P.;
Voituriez, A.; Marinetti, A. Dalton Trans. 2014, 43, 15263. (j)
Shigeno, M.; Kushida, Y.; Yamaguchi, M. Chem. Commun. 2016,
52, 4955.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Selected reviews, see: (a) Gingras, M. Chem. Soc. Rev. 2013, 42,
968. (b) Gingras, M.; Félix, G.; Peresutti, R. Chem. Soc. Rev. 2013,
42, 1007.
(3) Recent reviews, see: (a) Stará, I. G.; Starý, I. Phenanthrenes,
Helicenes and Other Angular Acenes. In Science of Synthesis;
Siegel, J. S., Tobe, Y., Eds.; Thieme: Stuttgart, 2010; Vol. 45b, pp
885. (b) Tanaka, K. Synthesis of Helically Chiral Aromatic
Compounds via [2 + 2 + 2] Cycloaddition. In Transition-Metal-
Mediated Aromatic Ring Construction; Tanaka, K., Ed.; Wiley:
Hoboken, NJ, 2013; pp 281. (c) Tanaka, K.; Kimura, Y.; Murayama,
K. Bull. Chem. Soc. Jpn. 2015, 88, 375. Recent reports, see: (d)
Shibata, T.; Uchiyama, T.; Yoshinami, Y.; Takayasu, S.;
Tsuchikama, K.; Endo, K. Chem. Commun. 2012, 48, 1311. (e)
Sawada, Y.; Furumi, S.; Takai, A.; Takeuchi, M.; Noguchi, K.;
Tanaka, K. J. Am. Chem. Soc. 2012, 134, 4080. (f) Jančařík, A.;
Rybáček, J.; Cocq, K.; Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.;
Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G.; Starý, I. Angew.
Chem. Int. Ed. 2013, 52, 9970. (g) Heller, B.; Hapke, M.; Fischer,
C.; Andronova, A.; Starý, I.; Stará, I. G. J. Organomet. Chem. 2013,
723, 98. (h) Šámal, M.; Chercheja, S.; Rybáček, J.; Vacek
Chocholoušová, J.; Vacek, J.; Bednárová, L.; Šaman, D.; Stará, I. G.;
Starý, I. J. Am. Chem. Soc. 2015, 137, 8469; (i) Tsujihara, T.; Inadaꢀ
Nozaki, N.; Takehara, T.; Zhou, D.ꢀY.; Suzuki, T.; Kawano, T. Eur.
J. Org. Chem. doi: 10.1002/ejoc.201600677.
In conclusion, we have developed an efficient and
enantioselective sequential synthesis of oxa[9]helicenes catalyzed
by a newly developed chiral vanadium complex. In this process,
the vanadium complex works as both a redox and a Lewis acid
catalyst, allowing the sequential reaction via an oxidative
coupling/intramolecular cyclization sequence. Additional
investigations into the reaction mechanism and the substrate
generality in other heteroꢀcouplings are now in progress.
Furthermore, synthetic studies on other heterohelicenes containing
nitrogen, silicon, and/or sulfur are in process in our laboratory.
ASSOCIATED CONTENT
Supporting Information
(4) Nakano, K.; Hidehira, Y.; Takahashi, K.; Hiyama, T.; Nozaki, K.
Angew. Chem. Int. Ed. 2005, 44, 7136.
(5) (a) Karikomi, M.; Yamada, M.; Ogawa, Y.; Houjou, H.; Seki, K.;
Hiratani, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2005, 46,
5867. (b) Salim, M.; Akutsu, A.; Kimura, T.; Minabe, M.; Karikomi,
M. Tetrahedron Lett. 2011, 52, 4518. (c) Salim, M.; Ubukata, H.;
Kimura, T.; Karikomi, M. Tetrahedron Lett. 2011, 52, 6591. (d)
Salim, M.; Kimura, T.; Karikomi, M. Heterocycles 2013, 87, 547.
(e) Karikomi, M.; Toda, M.; Sasaki, Y.; Shibuya, M.; Yamada, K.;
Kimura, T.; Minabe, M.; Hiratani, K. Tetrahedron Lett. 2014, 55,
7099.
(6) Sundar M. S.; Bedekar A. V. Org. Lett. 2015, 17, 5808.
(7) Rehder, D. Angew. Chem. Int. Ed. Engl. 1991, 30, 148.
(8) Reviews, see: (a) Bolm, C. Coord. Chem. Rev. 2003, 237, 245. (b)
Volcho, K. P.; Salakhutdinov, N. F. Russ. Chem. Rev. 2009, 78, 457.
(c) Plass, W. Coord. Chem. Rev. 2011, 255, 2378. (d) Pellissier, H.
Coord. Chem. Rev. 2015, 284, 93. (e) Takizawa, S.; Gröger, H.;
Sasai, H. Chem. Eur. J. 2015, 21, 8992. Selected examples (pioneer
work), see: (f) epoxidation: Michaelson, R. C.; Palermo, R. E.;
Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 1990. (g)
sulfoxidation: Nakajima, K.; Kojima, M.; Fujita, J. Chem. Lett.
1986, 1483. (h) oxidative coupling of 2ꢀnaphthols: Hon, S.ꢀW.; Li,
C.ꢀH.; Kuo, J.ꢀH.; Barhate, N. B.; Liu, Y.ꢀH.; Wang, Y.; Chen, C.ꢀT.
Org. Lett. 2001, 3, 869. (i) Chu, C.ꢀY.; Hwang, D.ꢀR.; Wang, S.ꢀK.;
Uang, B.ꢀJ. Chem. Commun. 2001, 980. (j) oxidation of αꢀhydroxy
carbonyl compounds: Radosevich, A. T.; Musich, C.; Toste, F. D. J.
Am. Chem. Soc. 2005, 127, 1090.
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
Experimental procedures, spectroscopic data
Xꢀray crystallographic data for (M)ꢀ2a (CCDC
1493624)
AUTHOR INFORMATION
Corresponding Author
sasai@sanken.osakaꢀu.ac.jp
taki@sanken.osakaꢀu.ac.jp
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Numbers
JP16H01152 in Middle Molecular Strategy, The Ministry of
Education, Culture, Sports, Science and Technology (MEXT),
Japan Society for the Promotion of Science (JSPS), the CREST
project of the Japan Science and Technology Corporation (JST),
and JST Advance Catalytic Transformation Program for Carbon
Utilization (ACTꢀC). We acknowledge the technical staff of the
Comprehensive Analysis Center of ISIR, Osaka University
(Japan).
(9) Selected examples (pioneer work), see: (a) DielsꢀAlder reaction:
Togni, A. Organometallics, 1990, 9, 3106. (b) cyanation of
aldehydes: Belokon, Y. N.; North, M.; Parsons, T. Org. Lett. 2000,
2, 1617. (c) ringꢀopening of mesoꢀepoxides: Sun, J.; Dai, Z.; Yang,
M.; Pan, X.; Zhu, C. Synthesis 2008, 2100. (d) Friedel–Crafts–type
reaction: Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Kodera, J.;
Nagata, Y.; Sasai, H. Dalton Trans. 2013, 42, 11787.
REFERENCES
ACS Paragon Plus Environment