13C NMR (CDCl ): d 172.59, 60.70, 51.06, 49.70, 31.94, 30.09,
29.64, 29.56, 29.37, 27.27, 22.71, 14.26, 14.13. IR (KCl): 2920,
pretreated in isopropyl alcohol for 2 h, to make their surface
hydrophobic.
3
UV–VIS spectra of LB multilayers were measured on a
Perkin-Elmer Lambda 4B spectrophotometer. The LB films
on a HOPG substrate were studied by scanning tunnelling
microscopy (STM) in air at room temperature, using a Digital
Instruments Nanoscope II equipped with a type A head, and
a Pt/Ir tip, using bias voltages between 100 and 300 mV, the
constant current mode, and set point currents between 2 and
5 nA.
2848, 2210, 1745, 1565, 1465, 1373, 1309, 1198, 1068, 900, 725,
593, 494 cm−1. MS (EI): m/z 271 (M+), 226, 212, 199, 198,
184, 116, 57. Anal. Calc. for C H NO : C, 70.8; H, 12.25; N,
16 33
2
5.16. Found: C, 71.7; H, 12.0; N, 5.17%.
To N-(n-dodecyl)glycine ethyl ester (0.100 g, 0.37 mmol) in
30 ml of methanol–water (151), was added sodium carbonate
(0.400 g, 3.7 mmol) and the mixture was stirred for 72 h at
room temperature. Then 0.5 ml of 12 HCl was added and
the resulting solution extracted with ethyl acetate. 1H NMR
[CDCl –CD OD (852)]: d 3.31 (br s, 2H), 2.76 (br t, J=
References
3
3
7.3 Hz, 2H), 1.59 (br s, 1H), 1.18 (s, 22 H), 0.81 (t, J=6.4 Hz,
3H). 13C NMR [CDCl –CD OD (852)]: d 168.9, 49.7, 49.3,
1
2
H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and
R. E. Smalley, Nature (L ondon), 1985, 318, 162.
W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman,
¨
Nature (L ondon), 1990, 347, 354.
3
3
47.5, 47.3, 47.2, 31.6, 29.3, 29.2, 29.1, 28.8, 26.2, 25.9, 22.3, 13.7.
IR (KCl): 3189, 2920, 2847, 1566, 1463, 1372, 1307, 1153, 1083,
873, 827, 798, 777, 726, 672, 529, 558, 507, 495, 466, 422,
405 cm−1. MS (EI): m/z 243 (M+), 199, 198, 89, 57.
3
4
C. A. Mirkin and W. B. Caldwell, T etrahedron, 1996, 52, 5113.
F. Arias, L. A. God’nez, S. R. Wilson, A. E. Kaifer and
L. Echegoyen, J. Am. Chem. Soc., 1996, 118, 6086.
Y. S. Obeng and A. J. Bard, J. Am. Chem. Soc., 1991, 113, 6279.
P. Wang, M. Shamsuzoha, X. Wu, W. Lee and R. M. Metzger,
J. Phys. Chem., 1992, 96, 9027.
5
6
Fullerene derivatives 1a and 1b
To C (50 mg, 0.07 mmol) in 30 ml of toluene, were added
0.07 mmol of amino acid (2a or 2b) and 10.4 mg (0.35 mmol)
of paraformaldehyde. The solution was heated to reflux for
1 h, the solvent evaporated and the crude product was purified
by chromatography. The products were recrystallized from
dichloromethane–methanol.
7
8
9
G. Williams, A. G. Moore, M. R. Bryce, Y. M. Lvov and M.
C. Petty, Synth. Met, 1993, 55–57, 2955.
G. Williams, G. Pearson, M. R. Bryce and M. C. Petty, T hin Solid
Films, 1992, 209, 150.
L. O. S. Bulhoes, Y. S. Obeng and A. J. Bard, Chem. Mater., 1993,
5, 110.
60
10 K. Chen, W. B. Caldwell and C. A. Mirkin, J. Am. Chem. Soc.,
1993, 115, 1193.
11 A. Hirsch, T he Chemistry of the Fullerenes, Thieme, Stuttgart, 1994.
12 T he Chemistry of Fullerenes, ed. R. Taylor, World Scientific,
Singapore, 1995.
13 F. Diederich and C. Thilgen, Science, 1996, 271, 317.
14 F. Diederich, U. Jonas, V. Gramlich, A. Herrmann, H. Ringsdorf
and C. Thilgen, Helv. Chim. Acta, 1993, 76, 2445.
15 G. Williams, A. Soi, A. Hirsch, M. R. Bryce and M. C. Petty, T hin
Solid Films, 1993, 230, 71.
16 L. M. Goldenberg, G. Williams, M. R. Bryce, A. P. Monkman,
M. C. Petty, A. Hirsch and A. Soi, J. Chem. Soc., Chem. Commun.,
1993, 1310.
1a: C H NO , 38%; 1H NMR d 4.51 (s, 4H), 4.06 (t, J=
69 19
3
5.6 Hz, 2H), 3.90–3.70 (m, 6H), 3.60–3.54 (m, 2H), 3.37 (s, 3H),
3.36 (t, J=5.6 Hz, 2H). 13C NMR d 155.15, 147.32, 146.26,
146.13, 146.08, 145.73, 145.42, 145.32, 144.59, 143.13, 142.65,
142.28, 142.10, 141.91, 140.17, 136.24, 72.07, 70.90, 70.81, 70.71,
70.55, 68.55, 59.13, 54.28. IR (KCl): 2865, 1427, 1340, 1185,
1113, 767, 704, 597, 575, 553, 526 cm−1. MALDI-MS: m/z 909
(M+), 932 (M+Na)+. UV–VIS (cyclohexane) l /nm: 702,
max
2
430, 323, 304, 255, 212. Anal. Calc. for C H NO : C, 91.08;
H, 2.11; N, 1.54. Found: C, 90.0; H, 2.07; N, 1.51%.
16 33
1b: C H N, 41%; 1H NMR d 4.36 (s, 4H), 3.04 (t, J=
74 29
17 N. C. Maliszewskyi, P. A. Heiney, D. H. Jones, R. M. Strongin,
M. A. Cichy and A. B. Smith III, L angmuir, 1993, 9, 1439.
18 C. J. Hawker, P. M. Saville and J. W. White, J. Org. Chem., 1994,
59, 3503.
19 Y. Li, Y. Xu, Y. Mo, F. Bai, Y. Li, Z. Wu, H. Han and D. Zhu, Solid
State Commun., 1994, 92, 185.
20 M. Maggini, A. Karlsson, L. Pasimeni, G. Scorrano, M. Prato and
L. Valli, T etrahedron L ett., 1994, 35, 2985.
21 M. Maggini, L. Pasimeni, M. Prato, G. Scorrano and L. Valli,
L angmuir, 1994, 10, 4164.
7.4 Hz, 2H), 1.90 (qnt, J=7.4 Hz, 2H), 1.59 (m, 2H), 1.15–1.50
(m, 16H), 0.85 (m, 3H). 13C NMR d 153.98, 152.67, 146.19,
145.15, 144.98, 144.60, 144.35, 144.18, 143.48, 142.02, 141.55,
141.17, 141.00, 140.82, 139.11, 135.20, 69.57, 66.98, 54.14, 31.15,
28.95, 28.91, 28.62, 28.07, 26.91, 22.02, 13.35. IR (KCl): 2924,
2849, 1510, 1461, 1182, 526. MALDI-MS: m/z 931 (M+).
UV–VIS (cyclohexane) l /nm: 702, 430, 323, 305, 255, 212.
max
Anal. Calc. for C H N: C, 95.36; H, 3.14; N, 1.50. Found: C,
95.6; H, 3.24; N, 1.50%.
74 29
22 U. Jonas, F. Cardullo, P. Belik, F. Diederich, A. Gugel, E. Harth,
¨
A. Herrmann, L. Isaacs, K. Mullen, H. Ringsdorf, C. Thilgen,
¨
P. Uhlmann, A. Vasella, C. A. A. Waldraff and M. Walter, Chem.
Eur. J., 1995, 1, 243.
23 D. M. Guldi, Y. Tian, J. H. Fendler, H. Hungerbulher and K.-
¨
D. Asmus, J. Phys. Chem., 1995, 99, 17673.
Monolayer and multilayer methodology
Solutions of compounds 1a and 1b in deuteriochloroform or
toluene were carefully spread onto a purified water subphase
(Millipore Milli-Q, resistivity 16 MV cm) in a vibration-iso-
lated Lauda film balance at room temperature and also at
thermostatically controlled lower water temperatures of 10, 15,
and 20 °C. The spread solutions were left for periods ranging
from 20 min to 12 h, after which they were compressed at a
barrier speed of 26 mm min−1.
24 M. Matsumoto, H. Tachibana, R. Azumi, M. Tanaka,
T. Nakamura, G. Yunome, M. Abe, S. Yamago and E. Nakamura,
L angmuir, 1995, 11, 660.
25 H. M. Patel, J. M. Didymus, K. K. W. Wang, A. Hirsch, A. Skiebe,
I. Lamparth and S. Mann, Chem. Commun., 1996, 611.
26 S. Ravaine, F. Le Peq, C. Mingotaud, P. Delhaes, J. C. Hummelen,
F. Wudl and L. K. Patterson, J. Phys. Chem., 1995, 99, 9551.
27 J. Y. Wang, D. Vaknin, R. A. Uphaus, K. Kiaer and M. Losche,
¨
T hin Solid Films, 1994, 242, 40.
28 M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1993,
115, 9798.
The monolayer film at the air/water interface (also known
as a Langmuir, or Pockels–Langmuir film) was transferred
onto quartz (Spectrasil or Suprasil) slides by the Langmuir–
Blodgett (LB, or vertical transfer) technique, or transferred
onto highly oriented pyrolytic graphite (HOPG, Union
Carbide ZYA grade) by the Langmuir–Schaefer (LS, or quasi-
horizontal transfer) technique. The quartz slides were
29 J. Milliken, D. D. Dominguez, H. H. Nelson and W. R. Barger,
Chem. Mater., 1992, 4, 252.
30 T. Da Ros, M. Prato, F. Novello, M. Maggini and E. Banfi, J. Org.
Chem., 1996, 61, 9070.
Paper 7/05950G; Received 13th August, 1997
2400
J. Mater. Chem., 1997, 7(12), 2397–2400