C O MMU N I C A T I O N S
Acknowledgment. We thank Dr. Adam Carroll for assistance
with the microarray printing and insightful discussions, Patty
Holman and Trent Su for the assistance with the microarray
scanning, and Sandra M. Waugh for the gift of recombinant
granzyme B. This work was supported by the NIH (grant #
GM54051). The Center for New Directions in Organic Synthesis
is supported by Bristol-Myers Squibb as a Sponsoring Member and
Novartis as a Supporting Member.
Supporting Information Available: Complete protocols for single
substrate and library syntheses, slide preparation, microarray printing,
enzyme assays, and kinetic analyses of microarrays and single
substrates, and microarray controls (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
References
Figure 3. Characterization of the substrate specificity of thrombin using
substrates of the general structure Ac-Ala-P3-P2-Lys-linker. Each square is
colored in proportion to the quantitated fluorescence intensity of the
corresponding substrate after treatment with thrombin, corresponding to the
relative amount of cleavage (normalized data and 3D bar graph available
in Supporting Information).
(1) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305.
(
2) Rawlings, N. D.; O’Brien, E.; Barrett, A. J. Nucleic Acids Res. 2002, 30,
343.
(
3) (a) For a recent review, see: Maly, D. J.; Huang, L.; Ellman, J. A.
ChemBioChem 2002, 3, 16. (b) Thornberry, N. A.; Rano, T. A.; Peterson,
E. P.; Rasper, D. M.; Timkey, T.; Garcia-Calvo, M.; Houtzager, V. M.;
Nordstrom, P. A.; Roy, S.; Vaillancourt, J. P.; Chapman, K. T.; Nicholson,
D. W. J. Biol. Chem. 1997, 272, 17907. (c) Harris, J. L.; Niles, A.; Burdick,
K.; Maffitt, M.; Backes, B. J.; Ellman, J. A.; Kuntz, I.; Haak-Frendscho,
M.; Craik, C. S. J. Biol. Chem. 2001, 276, 34941. (d) Matthews, D. J.;
Wells, J. A. Science 1993, 260, 1113. (e) Smith, M. M.; Shi, L.; Navre,
M. J. Biol. Chem. 1995, 270, 6440. (f) Turk, B. E.; Huang, L. L.; Piro, E.
T.; Cantley, L. C. Nat. Biotechnol. 2001, 19, 661. (g) Petithory, J. R.;
Masiarz, F. R.; Kirsch, J. F.; Santi, D. V.; Malcolm, B. A. Proc. Natl.
Acad. Sci. U.S.A. 1991, 88, 11510. (h) Birkett, A. J.; Soler, D. F.; Wolz,
R. L.; Bond, J. S.; Wiseman, J.; Berman, J.; Harris, R. B. Anal. Biochem.
1991, 196, 137. (i) Meldal, M.; Svendsen, I.; Breddam, K.; Auzanneau,
F.-I. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3314. (j) St. Hilaire, P. M.;
Willert, M.; Juliano, M. A.; Juliano, L.; Meldal, M. J. Comb. Chem. 1999,
1, 509. (k) Rosse, G.; Kueng, E.; Page, M. G.; Schauer-Vukasinovic, V.;
Giller, T.; Lahm, H.-W.; Hunziker, P.; Schlatter, D. J. Comb. Chem. 2000,
Table 1. Comparison of the Relative kcat/Km for Purified
Underivatized ACC-Peptides in Solution and the Correspondinga
Library Substrates on the Array, upon Treatment with Thrombin
solution phase
microarray
substrate
k
cat/K
m
kcat/K
m
Ac-ATPK-ACC
Ac-AGPK-ACC
Ac-ADAK-ACC
Ac-AFSK-ACC
1.00
0.27
0.02
0.02
1.00
0.26
0.09
0.00
a
In both cases, the data have been normalized to the Ac-ATPK-ACC
value.
2, 461. (l) Singh, J.; Allen, M. P.; Ator, M. A.; Gainor, J. A.; Whipple,
D. A.; Solowiej, J. E.; Treasurywala, A. M.; Morgan, B. A.; Gordon, T.
D.; Upson, D. A. J. Med. Chem. 1995, 38, 217. (m) Dekker, N.; Cox, R.
C.; Kramer, R. A.; Egmond, M. R. Biochemistry 2001, 40, 1694. (n)
Takeuchi, T.; Harris, J. L.; Huang, W.; Yan, K. W.; Coughlin, S. R.;
Craik, C. S. J. Biol. Chem 2000, 275, 34, 26333.
that results from the high substrate density on the array surface.11
The minimal enzyme requirements allow for the determination of
substrate specificity of proteases that are available in only limited
quantities.
(
(
(
4) In the standard notation, substrate residues are referred to as P
, where amide bond hydrolysis occurs between P
and P1′. Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun. 1967,
7, 157.
n 2
, Pn-1...P ,
1
P , P1′, P2′...Pm-1′, P
m
1
In conclusion, we have described an approach to obtain a
complete analysis of protease specificity using microarrays of
peptidyl coumarin substrates. The ACC substrates are uniquely
suited to this application because, unlike fluorescence resonance
energy transfer (FRET)-based substrates, ACC peptides do not
require further analysis to determine site of cleavage.3 The arrays
were constructed with standard DNA microarraying equipment,
using aldehyde-derivatized glass slides and alkoxylamine-function-
alized peptidyl coumarin substrates. The fidelity of proteolytic
cleavage of array-bound substrates was demonstrated using a variety
of proteases. The speed and efficiency of the methodology were
demonstrated by obtaining a proteolytic “fingerprint” of thrombin
in a single experiment. This method should enable fingerprints of
proteolytic activity to be rapidly obtained for numerous proteases,
because thousands of substrates can be printed on a single slide
and large numbers of slides can be readily printed using microarray
automation. Furthermore, due to the sensitivity and efficiency of
this assay, substrate cleavage profiles obtained by this methodology
could potentially be used to detect differential proteolytic profiles
in cell lysates and, thus, could have diagnostic applications.
2
5) (a) Harris, J. L.; Backes, B. J.; Leonetti, F.; Mahrus, S.; Ellman, J. A.;
Craik, C. S. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7754. (b) Maly, D.
J.; Leonetti, F.; Backes, B. J.; Dauber, D. S.; Harris, J. L.; Craik, C. S.;
Ellman, J. A. J. Org. Chem. 2002, 67, 910.
6) (a) Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S. Bioconjugate
Chem. 2001, 12, 346. (b) Cornish, V. W.; Hahn, K. M.; Schultz, P. G. J.
Am. Chem. Soc. 1996, 118, 8150. (c) Shao, J.; Tam, J. P. J. Am. Chem.
Soc. 1995, 117, 3893. (d) Rodriguez, E. C.; Marcaurelle, L. A.; Bertozzi,
C. R. J. Org. Chem. 1998, 63, 7134. (e) Rose, K. J. Am. Chem. Soc.
a
1994, 116, 30.
(
7) Jensen, K. J.; Alsina, J.; Songster, M. F.; Vagner, J.; Albericio, F.; Barany,
G. J. Am. Chem. Soc. 1998, 120, 5441.
(
(
8) MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760.
9) (a) Edwards, P. D.; Mauger, R. C.; Cottrell, K.; Morris, F. X.; Pine, K.
K.; Sylvester, M. A.; Scott, C. W.; Furlong, S. T. Bioorg. Med. Chem.
Lett. 2000, 10, 2291. (b) Backes, B. J.; Harris, J. L.; Leonetti, F.; Craik,
C. S.; Ellman, J. A. Nat. Biotechnol. 2000, 18, 187.
(10) The assay is run under conditions where the enzyme and substrate
concentrations are well below the K , and, therefore, the relative rates of
hydrolysis reflect kcat/K
m
m
ratios. See: Fersht, A. R. Enzyme Structure and
Mechanism, 3rd ed.; Freeman: New York, 1985; pp 105-106.
(11) Ekins, R. P.; Berger, H.; Chu, F. W.; Finckh, P.; Krause, F. Nanobiology
1998, 4, 197.
JA027477Q
14870 J. AM. CHEM. SOC.
9
VOL. 124, NO. 50, 2002