1
06
C. Bartsch, T. Doert / Journal of Solid State Chemistry 185 (2012) 101–106
Dresden) for Raman and UV/Vis measurements and for practical
support, respectively. Special thanks to Dr. G. Auffermann and
Dr. P. Simon (Max Planck Institute for Chemical Physics of Solids,
Dresden) for chemical analyses and TEM investigations.
Appendix A. Supporting information
References
[1] (a) P.N. Kumta, S.H. Risbud, J. Mater. Sci. 29 (1994) 1135;
(b) C. Witz, D. Huguenin, J. Lafait, S. Dupont, M.L. Theye, J. Appl. Phys. 79
(1996) 2038;
(
(
c) R. Mauricot, J. Bullot, J. Wery, M. Evain, Mater. Res. Bull. 31 (1996) 263;
d) A. Grzechnik, J. All., Comp 317 (2001) 190.
Fig. 9. Band gaps as a function of the selenium content.
[
[
[
2] (a) K. St o¨ we, J. Solid State Chem. 149 (2000) 155;
(b) K. St o¨ we, Z. Kristallogr. 216 (2001) 215;
(c) P. B o¨ ttcher, Th. Doert, H. Arnold, R. Tamazyan, Z. Kristallogr. 215 (2000)
ꢀ
1
sample. This signal is found at about 320 cm for low Se contents
ꢀ
1
and at ca. 290 cm for higher Se amounts, Fig. 7. A similar behavior
has been found in the pyrite type series RuS1ꢀxSe [16], another rare
dianion in solid state bulk material.
Finally the optical band gaps of selected samples were deter-
mined by UV/vis spectroscopy, Fig. 8. The band gaps vary almost
linearly with the selenium amount between 500 nm (2.48 eV for
LaS1.83Se0.17) and 800 nm (1.55 eV for LaS0.44Se1.56). As can be
expected, the band gaps decrease with increasing amount of
selenium, Fig. 9.
246.
x
3] (a) I.G. Vasilyeva, in: K.A. Gschneidner Jr., L. Eyring, G.H. Lander (Eds.),
Handbook on the Physics and Chemistry of the Rare Earths, Vol. 32,
Elsevier, Amsterdam, 2001, pp. 567–607 chapter 209 (Polysulfides);
2
2
ꢀ
example evidencing a ðS12ySe Þ
y
(b) A. Grzechnik, Physica B 262 (1999) 426.
4] (a) C.J. M u¨ ller, U. Schwarz, P. Schmidt, W. Schnelle, Th. Doert, Z. Anorg. Allg.
Chem. 636 (2010) 947;
(b) Th. Doert, Chr. Graf, W. Schnelle, I.G. Vasilyeva, Inorg. Chem., submitted
for publication;
(c) Th. Doert, Chr. Graf, P. Lauxmann, Th. Schleid, Z. Anorg. Allg. Chem. 633
(2007) 2719–2724;
(
(
d) Th. Doert, E. Dashjav, B.P.T. Fokwa, Z. Anorg. Allg. Chem. 633 (2007) 261;
e) Chr. Graf, Th. Doert, Z Kristallogr 224 (2009) 568–579.
[
5] (a) John H. Chen, Peter K. Dorhout, J. Solid State Chem 117 (1995) 318–322b;
b) Th. Schleid, P. Lauxmann, Chr. Graf, Chr. Bartsch, Th. Doert, Z. Naturforsch.
4b (2009) 189.
4
. Conclusions
(
6
A complete series of crystalline mixed lanthanum sulfide selenides
[6] A. LeBail, H. Duroy, J.L. Fourquet, Mater Res. Bull. 23 (1988) 447.
[7] JANA2006, Crystallographic Computing System, V. Petricek, M. Dusek, L.
Palatinus, Prague, 2010.
LaS2ꢀxSe
x
(0rxr2) was obtained via metathesis reaction. The
compounds have been identified via powder and single crystal
X-ray data and chemical analyses. The ternary compounds adopt
[8] X-Red32, Program for data reduction and absorption correction, Stoe & Cie.,
Darmstadt, Germany, 1998.
the
a
-LnS
2
structure with a pronounced site preference of the two
[9] X-Shape, Crystal shape optimization, Stoe & Cie., Darmstadt, Germany, 1998.
10] Apex Suite, Bruker-AXS, Madison, WI, USA, 2008.
11] SADABS, G.M. Sheldrick, Bruker-AXS, Karlsruhe, Germany, 2002.
12] G.M. Sheldrick, SHELX-97, Structure solution and refinement software, Uni-
versity of G o¨ ttingen, Germany, 1997.
[
[
[
crystallographically independent chalcogen positions. The lattice
parameters a, b and c, and hence the unit cell volumes, increase with
the selenium content of the compounds according to Vegard’s rule.
On the other hand, the optical band gaps decrease with increasing
[
13] (a) S. B e´ nazeth, D. Carr e´ , P. Laruelle, Acta Crystallogr. B38 (1982) 33;
(
(
b) S. B e´ nazeth, D. Carr e´ , P. Laruelle, Acta Crystallogr. B38 (1982) 37;
c) R. Tamazyan, H. Arnold, V.N. Molchanov, G.M. Kuzmicheva, I.G. Vasilyeva,
Z. Kristallogr. 215 (2000) 272;
selenium content. Raman measurements evidence
a
mixed
2ꢀ
2
2
ꢀ
ðS12ySe
y
Þ
chalcogenide (0oyo1) besides the well known S2 and
2
2
ꢀ
(
(
d) Th. Doert, Ch. Graf, Z. Anorg. Allg. Chem. 631 (2005) 1101;
e) C.J. M u¨ ller, Th. Doert, U. Schwarz, Z. Kristallogr. 226 (2011) 646.
Se species.
[
[
14] (a) S. B e´ nazeth, M. Guittard, J. Flahaut, J. Solid State Chem. 37 (1981) 44;
(
(
b) B. Le Rolland, P. McMillan, P. Colombet, C. R. Acad. Sci., Serie II 312 (1991)
17;
c) B. LeRolland, P. Molini e´ , P. Colombet, P.F. McMillan, J. Solid State Chem.
13 (1994) 312.
Acknowledgment
2
1
This work was financially supported by the Deutsche Forschungs-
gemeinschaft (DFG, Bonn Germany). We thank Ch. Ziegler, A. Klausch,
and E. Ahrens (Department of Chemistry and Food Chemistry, TU
15] A. Grzechnik, J.Z. Zheng, D. Wright, W.T. Petuskey, P.F. Mcmillan, J. Phys.
Chem. Solids 57 (1996) (1625).
[16] H.C. Lin, M.C. Lee, S.S. Lin, Y.S. Huang, Solid State Commun. 82 (1992) 821.