1010
S. Murru et al. / Tetrahedron Letters 48 (2007) 1007–1011
M.; Patel, B. K. Org. Biomol. Chem. 2004, 1670; (f)
Gopinath, R.; Haque, Sk. J.; Patel, B. K. J. Org. Chem.
2002, 67, 5842; (g) Naik, S.; Gopinath, R.; Patel, B. K.
Tetrahedron Lett. 2001, 42, 7679; (h) Gopinath, R.; Patel,
B. K. Org. Lett. 2000, 2, 4177.
3. (a) Kavala, V.; Naik, S.; Patel, B. K. J. Org. Chem. 2005,
70, 4267; (b) Kavala, V.; Naik, S.; Patel, B. K. J. Org.
Chem. 2005, 70, 6556.
4. Naik, S.; Kavala, V.; Gopinath, R.; Patel, B. K. Arkivoc
2006, 21.
5. Singh, C. B.; Murru, S.; Kavala, V.; Patel, B. K. Org. Lett.
2006, 8, 5397.
6. Scott, M. K.; Ross, T. M.; Lee, D. H. S.; Wang, H.-Y.;
Shank, R. P.; Wild, K. D.; Davis, C. B.; Crooke, J. J.;
Potocki, A. C.; Reitz, A. B. Bioorg. Med. Chem. 2000, 8,
1383.
7. (a) Larsen, L.; Garner, C. D.; Joule, J. A. J. Chem. Soc.,
Perkin Trans. 1 1989, 2311; (b) Firouzabadi, H.; Iranpoor,
N.; Karimi, B. Synlett 1999, 413.
8. Caputo, R.; Guaragna, A.; Palumbo, G.; Pedatella, S. J.
Org. Chem. 1997, 62, 9369.
9. Caputo, R.; Ferreri, C.; Palumbo, G.; Russo, F. Tetra-
hedron 1991, 47, 4187.
10. Lapouyade, R.; Morand, J. P. J. Chem. Soc., Chem.
Commun. 1987, 223.
11. Caputo, R.; Ciriello, U.; Festa, P.; Guaragna, A.;
Palumbo, G.; Pedatella, S. Eur. J. Org. Chem. 2003,
2617.
Figure 2. ORTEP diagram with atom numbering of 16a.
two sequential losses of HBr. This process is associated
with aromatisation leading to 12b. Benzodithiin 12b was
also obtained from cyclohexenone 13 with just 1.1 equiv
of EDPBT suggesting the requirement of two bromine
equivalents for complete aromatisation as proposed in
Scheme 3. Both a-tetralone 14 and b-tetralone 15 were
converted to the same naphtho-1,4-dithiin 14a. In the
latter case, proton abstraction occurs from the benzylic
carbon which is more acidic, whereas in the former, pro-
ton abstraction occurs from the only available b-carbon.
Finally, 6-methoxytetralone 16 was converted into
naphtho-1,4-dithiin derivative 16a. The single crystal
X-ray structure of 16a is shown in Figure 2.
12. Caputo, R.; Palumbo, G.; Pedatella, S. Tetrahedron 1994,
50, 7265.
13. Nakayama, J.; Nakamura, Y.; Hoshino, M. Heterocycles
1985, 23, 1119.
In conclusion, we have developed a one-pot transforma-
tion of acyclic ketones to 1,4-dithiins and cyclic ketones
to 1,4-benzodithiins/1,4-naphthodithiins using the
recyclable reagent, 1,10-(ethane-1,2-diyl)dipyridinium
bistribromide (EDPBT).18 This method is simple,
convenient, mild and environmentally benign. An inter-
esting aspect of this method is that EDPBT acts as a
promoter in the formation of 1,3-dithiolane and as a
reagent in the ring expansion step. The spent reagent
can be recovered, regenerated and reused.3,4
14. (a) Yoshino, H.; Kawazoe, Y.; Taguchi, T. Synthesis 1974,
713; (b) Fransisco, C. G.; Friere, R.; Hernandez, R.;
Salazar, J. A.; Suarez, E. Tetrahedron Lett. 1984, 25, 1621;
(c) Caputo, R.; Ferreri, C.; Palumbo, G. Synthesis 1991,
223; (d) Tani, H.; Inamasu, T.; Tamura, R.; Suzuki, H.
Chem. Lett. 1990, 1323; (e) Tani, H.; Inamasu, T.;
Masumoto, K.; Tamura, R.; Shimizu, H.; Suzuki, H.
Phosphorus, Sulfur Silicon Relat. Elem. 1992, 67, 261; (f)
Karimi, B.; Hazarkhani, H. Synthesis 2003, 2547; (g)
Philip, C. B.; Ley, S. V.; Morton, J. A.; Williams, D. J. J.
Chem. Soc., Perkin Trans. 1 1981, 457; (h) Jeko, J.; Timar,
T.; Jaszberenyi, J. C. J. Org. Chem. 1991, 56, 6748; (i)
Shukla, V. G.; Salgaonkar, P. D.; Akamanchi, K. G.
Synlett 2005, 1483; (j) Jeko¨, J.; Timar, T.; Jaszberenyi, J.
C. J. Org. Chem. 1991, 56, 6747; (k) Arote, N. D.;
Telvekar, V. N.; Akamanchi, K. G. Synlett 2005, 2935.
15. (a) Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H.;
Karimi, B. J. Org. Chem. 2002, 67, 2572; (b) Firouzabadi,
H.; Iranpoor, N.; Garzan, A.; Shaterian, H. R.; Ebrahi-
mzadeh, F. Eur. J. Org. Chem. 2005, 416.
16. Experimental procedure: To a solution of carbonyl com-
pound (5 mmol) in acetonitrile (10 mL) and 1,2-ethane-
dithiol (5.5 mmol) was added EDPBT (0.5 mmol). The
reaction mixture was stirred at room temperature. After
stirring for 30 min, an additional 2.5 mmol of EDPBT was
added to the reaction mixture and stirring was continued
at room temperature. The reaction progress was moni-
tored by TLC. After completion of the reaction, acetoni-
trile was evaporated and the reaction was quenched by
adding saturated NaHCO3 solution and the product was
extracted with ethyl acetate (2 · 25 mL). The organic layer
was separated and dried over anhydrous sodium sulfate
and concentrated. Further purification was accomplished
by column chromatography over a short column of silica
gel using a mixture of hexane, ethyl acetate as eluent. The
aqueous layer containing spent reagent was kept for
regeneration.3,4
Acknowledgements
B.K.P. and C.B.S. acknowledge the support for this
research from DST (SR/S1/OC-15/2006) and CSIR
(01/1946/04/EMR-II), New Delhi. S.M. and V.K.
acknowledge financial support to the institute. Thanks
are due to CIF IIT Guwahati, for NMR spectra and
DST FIST for XRD facilities.
References and notes
1. (a) Chaudhuri, M. K.; Khan, A. T.; Patel, B. K.; Dey, D.;
Kharmawophlang, W.; Lakshmiprabha, T. R.; Mandal,
G. C. Tetrahedron Lett. 1998, 39, 8163; (b) Bora, U.; Bose,
G.; Chaudhuri, M. K.; Dhar, S. S.; Gopinath, R.; Khan,
A. T.; Patel, B. K. Org. Lett. 2000, 2, 247.
2. (a) Roy, R. K.; Bagaria, P.; Naik, S.; Kavala, V.; Patel, B.
K. J. Phys. Chem. A 2006, 110, 2181; (b) Roy, R. K.;
Usha, V.; Patel, B. K.; Hairo, K. J. Comp. Chem. 2006,
773; (c) Kavala, V.; Patel, B. K. Eur. J. Org. Chem. 2005,
441; (d) Naik, S.; Kavala, V.; Gopinath, R.; Patel, B. K.
Arkivoc 2006, 119; (e) Naik, S.; Gopinath, R.; Goswami,