RSC Advances
Paper
maintained a steady state concentration. For PUF microcap- 18 L. Zhang, J. Wang, G.-N. Zhu and L. Su, Exp. Toxicol. Pathol.,
sules, water swelling was the major reason for TDC release. The 2010, 62, 163–169.
release kinetics demonstrated that the TDC microcapsules are 19 C. Gao, S. Leporatti, S. Moya, E. Donath and H. M ¨o hwald,
sensitive to pH, and the highest release rate was observed at pH Langmuir, 2001, 17, 3491–3495.
. Further, higher temperature accelerated the release rate of 20 W. C. Oliver and G. M. Pharr, J. Mater. Res., 2011, 7, 1564–
6
TDC microcapsules. The maximum load, hardness, and
1583.
Young's modulus under the same displacement conditions 21 C. A. Schuh, Mater. Today, 2006, 9, 32–40.
were decreased in the release process. The pot experiments 22 W. C. Oliver and G. M. Pharr, J. Mater. Res., 2011, 19, 3–20.
demonstrated that the TDC microcapsules were very effective 23 H. M. Song, Y. J. Kim and J. H. Park, J. Phys. Chem. C, 2008,
against R. solanacearum in vitro in plant owing to slow and
112, 5397–5404.
sustained long-term release of the active ingredient (TDC).
24 D. Sun, Q. Fu, Z. Ren, H. Li, D. Ma and S. Yan, Polym. Chem.,
2014, 5, 220–226.
2
5 J. Lee, M. Zhang, D. Bhattacharyya, Y. C. Yuan, K. Jayaraman
and Y. W. Mai, Mater. Lett., 2012, 76, 62–65.
Acknowledgements
This work was nancially supported by National Natural 26 W. Wang, L. Xu, F. Liu, X. Li and L. Xing, J. Mater. Chem. A,
Science Foundation of China (no. 31000878). The authors thank 2013, 1, 776–782.
Dr Wei Wang from Luoyang Ship Material Research Institute for 27 E. N. Brown, M. R. Kessler, N. R. Sottos and S. R. White,
his support of nanoindentation measurements.
J. Microencapsulation, 2003, 20, 719–730.
8 B. J. Blaiszik, N. R. Sottos and S. R. White, Compos. Sci.
Technol., 2008, 68, 978–986.
9 L. Yuan, G. Liang, J. Xie, L. Li and J. Guo, Polymer, 2006, 47,
5338–5349.
30 Y. Liu, J. Shi, Y. Feng, X. Yang, X. Li and Q. Shen, Biol. Fertil.
Soils, 2012, 49, 447–464.
31 X. Y. Dai, Y. R. Su, W. X. Wei, J. S. Wu and Y. K. Fan, J. Exp.
Bot., 2008, 60, 279–289.
2
2
Notes and references
1
2
3
4
5
6
7
8
9
N. Benmouhoub, N. Simmonet, N. Agoudjil and T. Coradin,
Green Chem., 2008, 10, 957–964.
X. Wang and J. Zhao, J. Agric. Food Chem., 2013, 61, 3789–
3796.
P. Stloukal, P. Kucharczyk, V. Sedlarik, P. Bazant and
M. Koutny, J. Agric. Food Chem., 2012, 60, 4111–4119.
32 F. Lemessa and W. Zeller, Biol. Control, 2007, 42, 336–344.
S. Zhang, Z. Chu, C. Yin, C. Zhang, G. Lin and Q. Li, J. Am. 33 L. Yuan, G.-Z. Liang, J.-Q. Xie, J. Guo and L. Li, Polym. Degrad.
Chem. Soc., 2013, 135, 5709–5716. Stab., 2006, 91, 2300–2306.
L. Zhou, M. Chen, L. Tian, Y. Guan and Y. Zhang, ACS Appl. 34 J. M. Rallison, Annu. Rev. Fluid Mech., 1984, 16, 45–66.
Mater. Interfaces, 2013, 5, 3541–3548.
K. E. Broaders, S. J. Pastine, S. Grandhe and J. M. J. Frechet,
Chem. Commun., 2011, 47, 665–667.
S. De Koker, R. Hoogenboom and B. G. De Geest, Chem. Soc.
Rev., 2012, 41, 2867–2884.
G. Verma and P. A. Hassan, Phys. Chem. Chem. Phys., 2013,
35 J. D. Rule, N. R Sottos and S. R. White, Polymer, 2007, 48,
3520–3529.
36 S. Cosco, V. Ambrogi, P. Musto and C. Carfagna, J. Appl.
Polym. Sci., 2007, 105, 1400–1411.
37 P. Papaphilippou, M. Christodoulou, O.-M. Marinica,
A. Taculescu, L. Vekas, K. Chrissas and T. Krasia-
Christoforou, ACS Appl. Mater. Interfaces, 2012, 4, 2139–2147.
38 K. Vasilev, N. Poulter, P. Martinek and H. J. Griesser, ACS
Appl. Mater. Interfaces, 2011, 3, 4831–4836.
1
5, 17016–17028.
A. C. Balazs, Mater. Today, 2007, 10, 18–23.
0 M. Andersson Trojer, L. Nordstierna, M. Nordin, M. Nyden
1
and K. Holmberg, Phys. Chem. Chem. Phys., 2013, 15, 39 S. Zuleger and B. C. Lippold, Int. J. Pharm., 2001, 217, 139–
7727–17741. 152.
1 T. Dispinar, C. A. L. Colard and F. E. Du Prez, Polym. Chem., 40 J. Siepmann and N. A. Peppas, Adv. Drug Delivery Rev., 2012,
013, 4, 763–772.
64, 163–174.
2 J. Asrar, Y. Ding, R. E. La Monica and L. C. Ness, J. Agric. Food 41 H. Masoud and A. Alexeev, ACS Nano, 2012, 6, 212–219.
Chem., 2004, 52, 4814–4820. 42 X. Li and B. Bhushan, Mater. Charact., 2002, 48, 11–36.
3 A. P. Esser-Kahn, S. A. Odom, N. R. Sottos, S. R. White and 43 J. Men ˇc ´ı k, L. H. He and J. N ˇe me ˇc ek, Polym. Test., 2011, 30,
J. S. Moore, Macromolecules, 2011, 44, 5539–5553. 101–109.
1
1
1
1
1
2
4 S. A. Odom, A. C. Jackson, A. M. Prokup, S. Chayanupatkul, 44 T.-H. Fang and W.-J. Chang, Microelectron. J., 2004, 35, 595–599.
N. R. Sottos, S. R. White and J. S. Moore, ACS Appl. Mater. 45 D. M. Ebenstein and L. A. Pruitt, Nano Today, 2006, 1, 26–33.
Interfaces, 2011, 3, 4547–4551.
46 W. C. Oliver and G. M. Pharr, MRS Bull., 2011, 35, 897–907.
1
5 I. M. Martins, S. N. Rodrigues, M. F. Barreiro and 47 S. Varughese, M. S. R. N. Kiran, K. A. Solanko, A. D. Bond,
A. E. Rodrigues, Ind. Eng. Chem. Res., 2012, 51, 11565–
1571.
U. Ramamurty and G. R. Desiraju, Chem. Sci., 2011, 2,
2236–2242.
1
1
1
6 M. A. Albrecht, C. W. Evans and C. L. Raston, Green Chem., 48 L. Feng, M. Chittenden, J. Schirer, M. Dickinson and
006, 8, 417–432. I. Jasiuk, J. Biomech., 2012, 45, 1775–1782.
7 P. Tang, X. Xiong and J. Du, Agric. Sci. Technol. Equip., 2008, 49 H. Yang, W. Zhang, Q. Kong, H. Liu, R. Sun, B. Lin, H. Zhang
2
3
, 35–36.
and Z. Xi, Food Chem. Toxicol., 2013, 53, 100–104.
4486 | RSC Adv., 2014, 4, 4478–4486
This journal is © The Royal Society of Chemistry 2014