X. Wu, B. S. Cooperman / Bioorg. Med. Chem. Lett. 10 (2000) 2387±2389
2389
Figure 2. Lineweaver±Burke plots demonstrating the eect of added 7 on GDP reductase, measured as a function of either dTTP concentration
(speci®city activator, part a), or GDP concentration (substrate, part b). No inhibitor (&); +20 mM of 7 (^).
2 to 3 conversion but with longer reaction time (36 h),
has about a ®ve-fold lower anity than dGTP itself. 8-
Mercapto-dGTP 6, binds with approximately the same
lower anity, while the 8-Br derivative 5 has markedly
lower anity.
References
1. Ericsson, S.; Sjoberg, B. M. In Allosteric Enzymes; Herve,
G., Ed.; CRC: Boca Raton, 1989; pp 189±215.
2. Thelander, L.; Reichard, P. Annu. Rev. Biochem. 1979, 48,
133.
3. Breitler, J. J.; Smith, R. V.; Haynes, H.; Silver, C. E.;
Quish, A.; Kotz, T.; Serrano, M.; Brook, A.; Wadler, S.
Invest. New Drugs 1998, 16, 161.
4. Eriksson, M.; Uhlin, U.; Ramaswamy, S.; Ekberg, M.;
Regnstrom, K.; Sjoberg, B. M.; Eklund, H. Structure 1997, 5,
1077.
5. Jordan, A.; Reichard, P. Annu. Rev. Biochem. 1998, 67, 71.
6. Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew.
Chem., Int. Ed. 1998, 37, 2754.
Disappointingly, the designed bivalent inhibitor 7 has
approximately the same anity as 6 and 8, suggesting
that this compound binds only to the allosteric site and
not to the active site. This suggestion was con®rmed by
Lineweaver±Burke plots (Fig. 2) showing that 7 is com-
petitive with dTTP for the speci®city site binding, while
it is a noncompetitive inhibitor toward GDP.
7. Kramer, R. H.; Karpen, J. W. Nature 1998, 395, 710.
8. Ikehara, M.; Uesugi, S. Chem. Pharm. Bull. 1969, 17, 348.
9. DeCamp, D. L.; Lim, S.; Colman, R. F. Biochemistry 1988,
27, 7651.
10. Ikehara, M.; Tazawa, I.; Fukui, T. Chem. Pharm. Bull.
1969, 17, 1091.
11. Brown, R. L.; Bert, R. J.; Evans, F. E.; Karpen, J. W.
Biochemistry 1993, 32, 10089.
12. Jankowski, A. L.; Wise, D. S.; Townsend, L. B. Nucleo-
sides Nucleotides 1989, 8, 339.
Nevertheless, the present results provide grounds for
optimism that high anity bivalent inhibitors of RR are
attainable. We believe that the failure of 7 to bind biva-
lently re¯ects a nonoptimal tether, since the results in
Table 1 show that 8-alkylthio substitution is reasonably
well-tolerated at both targeted sites. Future experiments
will focus on tether optimization, via straightforward
modi®cations of the synthetic route for 7.
13. Holmes, R. E.; Robins, R. K. J. Am. Chem. Soc. 1964, 86,
1242.
14. Lin, T.-S.; Cheng, J.-C.; Ishiguro, K.; Sartorelli, A. C. J.
Med. Chem. 1985, 28, 1194.
Acknowledgements
15. Murphy, J. H.; Trapane, T. L. Anal. Biochem. 1996, 240, 273.
16. Moore, E. C.; Peterson, D.; Yang, L. Y.; Yeung, C. Y.;
Ne, N. F. Biochemistry 1974, 13, 2904.
17. Scott, C. P. PhD Thesis, University of Pennsylvania,
Philadelphia, 1997, p 158.
We would like to thank Ossama Kashlan and Bari
Pender for providing mR1 and mR2 for enzyme assay.
Financial support was provided by the NIH grant
CA58567.