K. Parkhomenko et al. / Tetrahedron Letters 51 (2010) 822–825
825
It is striking to note that using MMA as the substrate, micro-
wave heating led to a very good yield (88%, entry 7) using catalyst
0086). We also thank Dr. Ernest Graf for experimental assistance
with reactions under microwave heating.
1
d, but it led to a yield of 2% only using catalyst 3 (entry 8); by con-
trast, 3 was superior to 1d with styrene as the ATRA substrate.
Overall, these figures showed that under microwave conditions,
unwanted chemical processes were avoided and the ATRA reaction
was often favoured.
With the non-activated substrate 1-hexene, the final yield in
Kharasch product was always equal to the conversion, indicating
that no polymerisation occurred (which is often expected with this
kind of substrate). Under conventional heating conditions, a good
yield (73%) could be reached after 5 days heating at 80 °C (entry
Supplementary data
Supplementary data (catalysts synthesis, experimental proce-
References and notes
9
). The reaction time was reduced to 0.5 h under microwave condi-
1. (a) Kharasch, M. S.; Engelmann, H.; Mayo, F. R. J. Org. Chem. 1937, 2, 288–302;
(
b) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
tions with fair yields (21 and 59%, respectively, entries 11 and 12).
Although we have implemented no mechanistic investigations
on ruthenacycle-catalysed Kharasch reactions so far, it is likely that
the reaction starts with the abstraction of X from CXCl
Ru –X transient species and a reactive CCl
2.
(a) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519–564; (b) Gossage,
R. A.; van de Kuil, L. A.; van Koten, G. Acc. Chem. Res. 1998, 31, 423–431.
3. (a) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599–2660; (b)
Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067–2096; (c)
Delaude, L.; Demonceau, A.; Noels, A. F. Top. Organomet. Chem. 2004, 11, 155–
3
that yields a
radical, like other Ru-
III
Å
3
1
71; (d) Nagashima, H. In Ruthenium in Organic Chemistry; Murahashi, S.-I., Ed.;
Wiley-VCH: Weinheim, 2004; pp 333–343; (e) Severin, K. Curr. Org. Chem.
006, 10, 217–224.
Djukic, J.-P.; Sortais, J.-B.; Barloy, L.; Pfeffer, M. Eur. J. Inorg. Chem. 2009, 817–
53.
catalysed atom-transfer radical additions.3 It has often been pro-
posed and discussed in the literature on ATRA13 or ATRP that the
active species would be an unsaturated ruthenium complex issued
from the decoordination of one of the ligands. With our own cata-
lysts, this ligand is probably a chloro, a hydroxo or an acetonitrile.
In conclusion, these preliminary investigations have shown that
cycloruthenated complexes exhibit interesting catalytic activities
in the field of ATRA reactions, even with a moderately reactive
substrate such as 1-hexene. They represent a new advancement
in the field of organic transformations catalysed by metallacycles.
We noticed a beneficial effect of microwave irradiation similar to
6a
2
4.
8
5. (a) Sortais, J.-B.; Ritleng, V.; Voelklin, A.; Holuigue, A.; Smail, H.; Barloy, L.;
Sirlin, C.; Verzijl, G. K. M.; Boogers, J. A. F.; de Vries, A. H. M.; de Vries, J. G.;
Pfeffer, M. Org. Lett. 2005, 7, 1247–1250; (b) Sortais, J.-B.; Barloy, L.; Sirlin, C.;
de Vries, A. H. M.; de Vries, J. G.; Pfeffer, M. Pure Appl. Chem. 2006, 78, 457–462;
(
c) Pannetier, N.; Sortais, J.-B.; Dieng, P. S.; Barloy, L.; Sirlin, C.; Pfeffer, M.
Organometallics 2008, 27, 5852–5859; (d) Hijazi, A.; Parkhomenko, K.; Djukic,
J.-P.; Chemmi, A.; Pfeffer, M. Adv. Synth. Catal 2008, 350, 1493–1496; (e) Djukic,
J.-P.; Parkhomenko, K.; Hijazi, A.; Chemmi, A.; Allouche, L.; Brelot, L.; Pfeffer,
M.; Ricard, L.; Le Goff, X.-F. Dalton Trans. 2009, 2695–2711.
6. (a) Diaz Camacho, F.; Lopez Morales, S.; Le Lagadec, R.; Alexandrova, L.
Macromol. Symp. 2006, 242, 25–33; (b) Diaz Camacho, F.; Le Lagadec, R.;
Ryabov, A. D.; Alexandrova, L. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 4193–
1
2
the one reported previously with other ruthenium catalysts; this
procedure considerably shortened the reaction times and could
lead to very good yields with CBrCl or even CCl . Our preliminary
3 4
findings have opened a way towards potentially interesting appli-
cations, and they encourage us to extend the library of ATRA cata-
lysts to other complexes, for example, cycloruthenated phosphines
or carbenes. Further work in asymmetric Kharasch reactions is now
under progress using chiral cycloruthenated complexes; these
proved successful in the past with other asymmetric catalytic reac-
4
204; (c) Aguilar-Lugo, C.; Le Lagadec, R.; Ryabov, A. D.; Cedillo Valverde, C.;
Lopez Morales, S.; Alexandrova, L. J. Polym. Sci., Part A: Polym. Chem. 2009, 47,
814–3828.
3
7.
Iizuka, Y.; Li, Z.; Satoh, K.; Kamigaito, M.; Okamoto, Y.; Ito, J.; Nishiyama, H. Eur.
J. Org. Chem. 2007, 782–791.
8. Quebatte, L.; Solari, E.; Scopelliti, R.; Severin, K. Organometallics 2005, 24, 1404–
406.
Opstal, T.; Verpoort, F. Tetrahedron Lett. 2002, 43, 9259–9263.
0. Quebatte, L.; Scopelliti, R.; Severin, K. Eur. J. Inorg. Chem. 2005, 3353–3358.
1
9.
1
11. Richel, A.; Demonceau, A.; Noels, A. F. Tetrahedron Lett. 2006, 47, 2077–2081.
12. Borguet, Y.; Richel, A.; Delfosse, S.; Leclerc, A.; Delaude, L.; Demonceau, A.
Tetrahedron Lett. 2007, 48, 6334–6338.
4
,5
tions, such as the reduction of ketones via hydrogen transfer.
1
3. (a) Quebatte, L.; Scopelliti, R.; Severin, K. Angew. Chem. Int. Ed. 2004, 43, 1520–
524. and refs included; (b) Simal, F.; Wlodarczak, L.; Demonceau, A.; Noels, A.
F. Eur. J. Org. Chem. 2001, 2689–2695.
Acknowledgements
1
The authors thank the Agence National de la Recherche for
financing a Young Investigator Program (project ANR-06-JCJC-