Epoxidation of alkenes over MoO2–salen–GO
For comparison, the catalytic properties of neat complex were
also investigated and the results are listed in Table 1. The MoO2–
salen catalyst shows 54.3% conversion of cyclooctene with a TOF
of 26.7 hÀ1 after 8 h when using TBHP as the solvent in CHCl3,
which is much lower than the corresponding heterogeneous cat-
alyst MoO2–salen–GO. A similar result is observed when using
H2O2 as the solvent in CH3CN. A blank experiment performed
over SalenH2–GO showed only 2.8% conversion of cyclooctene.
These results suggest that the active sites are the transition metal
ions and the supported catalyst could effectively isolate the
active species and prevent formation of μ-oxo and μ-peroxo
dimeric or other polymeric species.
Furthermore, the results of the epoxidation of various sub-
strates (cyclooctene, geraniol, styrene and 1-octene) using differ-
ent oxidants over the MoO2–salen–GO catalyst were also
investigated (Table 1). It is obvious that the heterogeneous cata-
lyst showed comparable or even higher conversions in oxidation
of cyclooctene, geraniol, styrene and 1-octene using TBHP as
oxidant in CHCl3 than those achieved using H2O2 as oxidant in
CH3CN, which might be attributed to the decomposition of
H2O2 into molecular oxygen and water.[32] Moreover, the conver-
sion of cyclooctene is highest, followed by geraniol and then 1-
octene using TBHP as oxidant in CHCl3 (Table 1), which may be
due to electron density.[31]
Specialized Research Fund for the Doctoral Program of Higher
Education (20100061120083).
References
[1] S. A. Hauser, M. Cokoja, F. E. Kühn, Catal. Sci. Technol. 2013, 3, 552.
[2] S. Shylesh, M. Jia, W. R. Thiel, Eur. J. Inorg. Chem. 2010, 2010, 4395.
[3] M. Vasconcellos-Dias, C. D. Nunes, P. D. Vaz, P. Ferreira, P. Brandão,
V. Félix, M. J. Calhorda, J. Catal. 2008, 256, 301.
[4] L. Saikia, D. Srinivas, P. Ratnasamy, Micropor. Mesopor. Mat. 2007,
104, 225.
[5] C. Pereira, A. R. Silva, A. P. Carvalho, J. Pires, C. Freire, J. Mol. Catal. A:
Chem. 2008, 283, 5.
[6] G. Xu, Q.-H. Xia, X.-H. Lu, Q. Zhang, H.-J. Zhan, J. Mol. Catal. A: Chem.
2007, 266, 180.
[7] S. Islam, A. S. Roy, P. Mondal, M. Mubarak, S. Mondal, D. Hossain,
S. Banerjee, S. Santra, J. Mol. Catal. A: Chem. 2011, 336, 106.
[8] M. Moghadam, S. Tangestaninejad, V. Mirkhani, I. Mohammadpoor-
Baltork, M. Moosavifar, J. Mol. Catal. A: Chem. 2009, 302, 68.
[9] Y. Yang, H. Ding, S. Hao, Y. Zhang, Q. Kan, Appl. Organomet. Chem.
2011, 25, 262.
[10] M. Masteri-Farahani, F. Farzaneh, M. Ghandi, J. Mol. Catal. A: Chem.
2006, 243, 170.
[11] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, J. Mater. Chem. 2012,
22, 5495.
[12] K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, Carbon 2013,
53, 38.
[13] H. P. Mungse, S. Verma, N. Kumar, B. Sain, O. P. Khatri, J. Mater. Chem.
2012, 22, 5427.
[14] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. Dommett,
G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature 2007, 448, 457.
[15] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010,
39, 228.
[16] O. C. Compton, S. T. Nguyen, Small 2010, 6, 711.
[17] K. Krishnamoorthy, R. Mohan, S.-J. Kim, Appl. Phys. Lett. 2011, 98,
244101.
To assess the long-term stability and reusability of the supported
dioxomolybdenum(VI) salen complex catalyst, cyclooctene was
used as substrate, and the recycling experiments were carried
out with 0.05 g MoO2–salen–GO. The results of the recovered cata-
lyst after three recycling experiments are listed in Table 1. It is clear
that the MoO2–salen–GO catalyst could be successfully recycled
three times without significant loss of activity and selectivity in
the same manner as that of the fresh catalyst.
[18] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Carbon 2011,
49, 2917.
[19] D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S.-H. Yoon, Langmuir
2010, 26, 16096.
Conclusions
[20] Y. Yang, S. Hao, Y. Zhang, Q. Kan, Solid State Sci. 2011, 13, 1938.
[21] Y. Yang, Y. Zhang, S. Hao, J. Guan, H. Ding, F. Shang, P. Qiu, Q. Kan,
Appl. Catal. A: Gen. 2010, 381, 274.
[22] Y. Yang, Y. Zhang, S. Hao, Q. Kan, J. Colloid Interf. Sci. 2011, 362, 157.
[23] D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Chem.
Mater. 2009, 21, 3136.
[24] G. Wang, X. Shen, J. Yao, J. Park, Carbon 2009, 47, 2049.
[25] J. Sun, J. Zhang, L. Wang, L. Zhu, X. Meng, F.-S. Xiao, J. Energy Chem.
2013, 22, 48.
[26] S. Choudhary, H. P. Mungse, O. P. Khatri, J. Mater. Chem. 2012, 22,
21032.
[27] Z.-G. Le, Z. Liu, Y. Qian, C. Wang, Appl. Surf. Sci. 2012, 258, 5348.
[28] W. Ai, J.-Q. Liu, Z.-Z. Du, X.-X. Liu, J.-Z. Shang, M.-D. Yi, L.-H. Xie,
J.-J. Zhang, H.-F. Lin, T. Yu, RSC Adv. 2013, 3, 45.
[29] H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, J. Mater.
Chem. 2009, 19, 4632.
The covalent attachment of dioxomolybdenum(VI) salen complex
onto monolayer GO was prepared via a stepwise procedure and
screened as heterogeneous catalyst for the epoxidation of al-
kenes. The structures of the support GO and the tethered cata-
lyst, successful immobilization of the organometallic complex,
and loading of metal ion and organic ligand were characterized
by various techniques such as XRD, N2 adsorption–desorption,
TEM, HR-TEM, FT-IR, Raman, ICP-AES, XPS and TG. It was found
that heterogeneous catalyst was active and selective for the ep-
oxidation of various alkenes. In addition, the catalyst showed
good recoverability without significant loss in activity and selec-
tivity within successive runs.
[30] J. Dupin, D. Gonbeau, I. Martin-Litas, P. Vinatier, A. Levasseur, Appl.
Surf. Sci. 2001, 173, 140.
Acknowledgments
[31] M. Masteri-Farahani, F. Farzaneh, M. Ghandi, Catal. Commun. 2007,
8, 6.
This work was supported by the National Natural Science Foun-
dation of China (21303069), Jilin province (201105006) and
[32] S. McCann, M. McCann, M. T. Casey, M. Jackman, M. Devereux, V. McKee,
Inorg. Chim. Acta 1998, 279, 24.
Appl. Organometal. Chem. 2014, 28, 317–323
Copyright © 2014 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc