Communication
Green Chemistry
structure can be obtained for 13. Thereby, the structure of
compound 13 was determined by 1D and 2D NMR analyses
and the relative cis-configuration was assigned though a
NOESY experiment (see ESI†).
J. O. Metzger and H. J. Schäfer, Angew. Chem., Int. Ed.,
2011, 50, 3854–3871, (Angew. Chem., 2011, 123, 3938–3956);
(c) M. A. R. Meier, J. O. Metzger and U. S. Schubert, Chem.
Soc. Rev., 2007, 36, 1788–1802; (d) Y. Xia and R. C. Larock,
Green Chem., 2010, 12, 1893–1909; (e) J. M. Fraile,
J. I. García, C. I. Herrerías and E. Pires, Synthesis, 2017, 49,
1444–1460.
Conclusions
5
6
(a) D. P. Pfister, Y. Xia and R. C. Larock, ChemSusChem,
In conclusion, we have developed the selective catalytic oxi-
dation of diglycerol using a palladium/neocuproine complex
and oxygen as a clean oxidant. After optimization of the reac-
tion parameters on α,α-diglycerol, the mono-oxidation product
was obtained with high selectivity (99%) and high yield (93%).
The product was isolated with up to 76% yield and was found
to mainly exist as a cyclic hemi-ketal form. Given its structural
similarities with ketoses, this original “ketose-like” compound
has been named “diglycerose”. The conditions were also
applied to α,β-diglycerol and the corresponding hemi-ketal was
obtained with 51% yield. Finally, α,α-diglycerol was used as a
platform molecule for benzoylation and dehydration reactions.
2
1
011, 4, 703–717; (b) Z. Petrovic, Polym. Rev., 2008, 48, 109–
55.
(a) A. Wolfson, C. Dlugy and Y. Shotland, Environ. Chem. Lett.,
2007, 5, 67–71; (b) Y. Gu and F. Jérôme, Green Chem., 2010,
12, 1127–1138; (c) A. E. Díaz-Álvarez, J. Francos, P. Crochet
and V. Cadierno, Curr. Green Chem., 2014, 1, 51–65.
7
8
9
(a) F. Zeng, X. Yang, D. Li, L. Dai, X. Zhang, Y. Lv and
Z. Wie, J. Appl. Polym. Sci., 2020, 137, 48574; (b) O. Valerio,
M. Misra and A. K. Mohanty, ACS Sustainable Chem. Eng.,
2018, 6, 5681–5693; (c) O. Valerio, J. M. Pin, M. Misra and
A. K. Mohanty, ACS Omega, 2016, 1, 1284–1295.
(a) C. J. A. Mota, B. Peres Pinto and A. L. de Lima, Glycerol:
A Versatile Renewable Feedstock for the Chemical Industry,
Springer International Publishing, New York, 2017;
Conflicts of interest
(
b) C. H. Zhou, J. N. Beltramini, Y. X. Fan and G. Q. Lu,
Chem. Soc. Rev., 2008, 37, 527–549.
(a) B. Katryniok, S. Paul, V. Belliere-Baca, P. Rey and
F. Dumeignil, Green Chem., 2010, 12, 2079–2098;
There are no conflicts to declare.
(
b) A. Martin, U. Armbruster and H. Atia, Eur. J. Lipid Sci.
Acknowledgements
Technol., 2012, 114, 10–23; (c) B. Katryniok, S. Paul and
F. Dumeignil, ACS Catal., 2013, 3, 1819–1834.
0 (a) S. Carrettin, P. McMorn, P. Johnston, K. Griffin and
The China Scholarship Council (CSC) is warmly thanked for a
Ph.D. grant to H. Wang.
1
G. J. Hutchings, Chem. Commun., 2002, 7, 696–697;
(b) S. Chen, P. Qi, J. Chen and Y. Yuan, RSC Adv., 2015, 5,
3
1566–31574; (c) H. Tan, O. E. Tall, Z. Liu, N. Wei,
Notes and references
T. Yapici, T. Zhan, M. N. Hedhill and Y. Han,
1
(a) A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
ChemCatChem, 2016, 8, 1699–1707.
2
411–2502; (b) P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538– 11 (a) Y. Wang, J. Zhou and X. Guo, RSC Adv., 2015, 5, 74611–
1
558; (c) R. A. Sheldon, Green Chem., 2014, 16, 950–963;
74628; (b) H. Zhao, L. Zheng, X. Li, P. Chen and Z. Hou,
Catal. Today, 2020, 355, 84–95.
(
(
d) R. A. Sheldon, Green Chem., 2014, 16, 950–963;
e) R. Fang, A. Dhakshinamoorthy, Y. Li and H. Garcia, 12 M. O. Sonnati, S. Amigoni, E. P. Taffin de Givenchy,
Chem. Soc. Rev., 2020, 49, 3638–3687; (f) M. Besson,
P. Gallezot and C. Pinel, Chem. Rev., 2014, 114, 1827–1870;
T. Darmanin, O. Choulet and F. Guittard, Green Chem.,
2013, 15, 283–306.
(
(
9
g) A. J. J. Straathof, Chem. Rev., 2014, 114, 1871–1908; 13 M. R. Nanda, Y. Zhang, Z. Yuan, W. Qin, H. S. Ghaziaskar
h) D. Liu and E. Y.-X. Chen, Green Chem., 2014, 16, 964–
81.
and C. Xu, Renewable Sustainable Energy Rev., 2016, 56,
1022–1031.
2
3
(a) S. Hu, X. Luo and Y. Li, ChemSusChem, 2014, 7, 66–72; 14 (a) M. Sutter, L. Pehlivan, R. Lafon, W. Dayoub, Y. Raoul,
(
b) O. Gómez-Jiménez-Aberasturi and J. R. Ochoa-Gómez,
E. Métay and M. Lemaire, Green Chem., 2013, 15, 3020–
3026; (b) M. Sutter, W. Dayoub, E. Métay, Y. Raoul and
M. Lemaire, ChemCatChem, 2013, 5, 2893–2904.
J. Chem. Technol. Biotechnol., 2017, 92, 705–711.
(a) F. Ma and M. A. Hanna, Bioresour. Technol., 1999, 70, 1–
1
5; (b) A. Srivastava and R. Prasad, Renewable Sustainable 15 J. I. García, H. García-Marín and E. Pires, Green Chem.,
Energy Rev., 2000, 4, 111–113; (c) A. Demirbas, Appl. Energy,
011, 88, 17–28.
(a) U. Biermann, W. Friedt, S. Lang, W. Lühs,
2014, 16, 1007–1033.
2
16 D. Ragno, A. Brandolese, D. Urbani, G. Di Carmine, C. De
Risi, O. Bortolini, P. P. Giovannini and A. Massi, React.
Chem. Eng., 2018, 3, 816–825.
4
G. Machmüller, J. O. Metzger, M. Rüsch gen Klaas,
H. J. Schäfer and M. P. Schneider, Angew. Chem., Int. Ed., 17 (a) B. Burczyk and L. Weclas, Tenside Deterg., 1980, 17, 21–
2
000, 39, 2206–2224, (Angew. Chem., 2000, 112, 2292–2310);
24; (b) X. Li, L. Wu, Q. Tang and J. Dong, Tenside,
Surfactants, Deterg., 2017, 54, 54–63.
(
b) U. Biermann, U. Bornscheuer, M. A. R. Meier,
1158 | Green Chem., 2021, 23, 1154–1159
This journal is © The Royal Society of Chemistry 2021