Paper
PCCP
Following photoexcitation in solvents of varying polarity, the
excited state population in E,E-DPD evolves out of the Franck–
Condon region within 500 fs, along with geometry rearrangement
of the solute and surrounding solvent, enabling access to an
energetically accessible S /S conical intersection. As the popula-
3 F. R. de Gruijl, Eur. J. Cancer, 1999, 35, 2003–2009.
4 M. Brenner and V. J. Hearing, Photochem. Photobiol., 2008,
84, 539–549.
5 M. Krause, A. Klit, M. Blomberg Jensen, T. Søeborg,
H. Frederiksen, M. Schlumpf, W. Lichtensteiger, N. E.
Skakkebaek and K. T. Drzewiecki, Int. J. Androl., 2012, 35,
424–436.
6 N. A. Shaath, Photochem. Photobiol. Sci., 2010, 9, 464–469.
7 M. D. Horbury, L. A. Baker, N. D. N. Rodrigues, W.-D. Quan
and V. G. Stavros, Chem. Phys. Lett., 2017, 673, 62–67.
8 N. D. N. Rodrigues, M. Staniforth, J. D. Young, Y. Peperstraete,
N. C. Cole-Filipiak, J. R. Gord, P. S. Walsh, D. M. Hewett,
T. S. Zwier and V. G. Stavros, Faraday Discuss., 2016, 194,
709–729.
9 S. Foley, S. Navaratnam, D. J. McGarvey, E. J. Land,
T. G. Truscott and C. A. Rice-Evans, Free Radical Biol.
Med., 1999, 26, 1202–1208.
10 A. Gaspar, M. Martins, P. Silva, E. M. Garrido, J. Garrido,
O. Firuzi, R. Miri, L. Saso and F. Borges, J. Agric. Food Chem.,
2010, 58, 11273–11280.
1
0
tion transfers to the electronic ground state, the first difference
between E,E-DPD and E-EHMC is in the relaxation times; B10 ps
for E,E-DPD and B2 ps E-EHMC (both in cyclohexane). Ultimately
this change is assigned to effects of the additional methyl acrylate
on the excited state landscape. The second difference relates to
the assignment of t . Here t describes the presence of the
3
3
corresponding E,Z-DPD isomer, along with a small percentage
1
of the excited state population trapped in an np* (or triplet)
state, which persists beyond the time-window of the present
measurements (ons). This ns component is absent in E-EHMC.
Furthermore no evidence for Z,Z-DPD was observed, leading to
the conclusion that its formation is unfavoured and the photo-
equilibrium is generated between E,E-DPD, and E,Z-DPD.
As a final comparison, the steady-state absorption spectra of
E,E-DPD (in solvents of varying polarity) are red-shifted relative to
the absorption spectra of E-EHMC, allowing for stronger absorp- 11 J. C. Murray, J. A. Burch, R. D. Streilein, M. A. Iannacchione,
tion within the UV-A region of the spectrum. This is a key quality,
which is expected for new chemical filters, given the growing
R. P. Hall and S. R. Pinnell, J. Am. Acad. Dermatol., 2008, 59,
418–425.
need for photoprotection across the UVB and UVA regions of the 12 K. Sevgi, B. Tepe and C. Sarikurkcu, Food Chem. Toxicol.,
1
solar spectrum. Taken together the results shown here provide a
2015, 77, 12–21.
potential blue-print into how a current chemical filter can be 13 J. Luo, Y. Liu, S. Yang, A. L. Flourat, F. Allais and K. Han,
adapted and improved for use in future cosmetic products.
J. Phys. Chem. Lett., 2017, 8, 1025–1030.
1
4 S. Wang, S. Schatz, M. C. Stuhldreier, H. B o¨ hnke, J. Wiese,
C. Schr o¨ der, T. Raeker, B. Hartke, J. K. Keppler, K. Schwarz,
F. Renth and F. Temps, Phys. Chem. Chem. Phys., 2017, 19,
Conflicts of interest
3
0683–30694.
There are no conflicts to declare.
1
5 M. D. Horbury, W.-D. Quan, A. L. Flourat, F. Allais and
V. G. Stavros, Phys. Chem. Chem. Phys., 2017, 19, 21127–21131.
Acknowledgements
16 A. Espagne, D. H. Paik, P. Changenet-Barret, M. M. Martin
and A. H. Zewail, ChemPhysChem, 2006, 7, 1717–1726.
The authors thank Dr Michael Staniforth at the Warwick Centre
for Ultrafast Spectroscopy (WCUS; www.go.warwick.ac.uk/WCUS),
for experimental aid. The authors would also like to thank
Dr Nicholas Hine for valuable discussions regarding the theory.
J. M. W. is grateful to EPSRC and Newport Spectra-Physics Ltd
for a joint studentship. M. A. P. T. thanks EPSRC for a doctoral
studentship through the EPSRC Centre for Doctoral Training in
Molecular Analytical Science, grant number EP/L015307/1.
M. D. H. thanks the Leverhulme Trust for postdoctoral funding.
V. G. S. is grateful to the EPSRC for an equipment grant
1
7 M. Vengris, D. S. Larsen, M. A. van der Horst, O. F. A.
Larsen, K. J. Hellingwerf and R. van Grondelle, J. Phys.
Chem. B, 2005, 109, 4197–4208.
8 M. D. Horbury, A. L. Flourat, S. E. Greenough, F. Allais and
V. G. Stavros, Chem. Commun., 2018, 54, 936–939.
9 U. Osterwalder and B. Herzog, Photochem. Photobiol. Sci.,
1
1
2
2010, 9, 470–481.
0 Y. Peperstraete, M. Staniforth, L. A. Baker, N. D. N.
Rodrigues, N. C. Cole-Filipiak, W.-D. Quan and V. G.
Stavros, Phys. Chem. Chem. Phys., 2016, 18, 28140–28149.
1 T. M. Karpkird, S. Wanichweacharungruang and B. Albinsson,
Photochem. Photobiol. Sci., 2009, 8, 1455–1460.
(EP/N010825) and the Royal Society and the Leverhulme Trust
2
2
for a Royal Society Leverhulme Trust Senior Research Fellowship.
Computing facilities were provided by the Scientific Computing
Research Technology Platform of the University of Warwick.
2 S. Pattanaargson, T. Munhapol, P. Hirunsupachot and
P. Luangthongaram, J. Photochem. Photobiol., A, 2004, 161,
269–274.
2
3 K. M. Hanson, S. Narayanan, V. M. Nichols and C. J. Bardeen,
Photochem. Photobiol. Sci., 2015, 14, 1607–1616.
Notes and references
1
R. P. Sinha and D.-P. H ¨a der, Photochem. Photobiol. Sci., 24 A. Sharma, K. B ´a nyiov ´a , P. Babica, N. El Yamani, A. R. Collins
ˇ
2
002, 1, 225–236.
G. P. Pfeifer, Y. H. You and A. Besaratinia, Mutat. Res., 25 N. Bl u¨ thgen, S. Zucchi and K. Fent, Toxicol. Appl. Pharmacol.,
Fundam. Mol. Mech. Mutagen., 2005, 571, 19–31. 2012, 263, 184–194.
and P. Cupr, Sci. Total Environ., 2017, 593–594, 18–26.
2
Phys. Chem. Chem. Phys.
This journal is ©the Owner Societies 2019