ACS Catalysis
Page 4 of 6
Zhao, Y. Carné-Sánchez, A.; Malgras, V.; Kim, J.; Ho Kim, J.;
Wang, S.; Liu, J.; Jiang, J. S.; Yamauchi, Y.; Hu, M. Hollow car-
bon nanobubbles: monocrystalline MOF nanobubbles and their
pyrolysis. Chem. Sci. 2017, 8, 3538-3546. (e) Young, C.; Wang,
J.; Kim, J.; Sugahara, Y.; Henzie, J.; Yamauchi, Y. Controlled
Chemical Vapor Deposition for Synthesis of Nanowire Arrays of
Metal–Organic Frameworks and Their Thermal Conversion to
Carbon/Metal Oxide Hybrid Materials. Chem. Mater. 2018, 30,
3379-3386. (f) Wang, C.; Kaneti,Y. V.; Bando, Y.; Lin, J.; Liu,
C.; Li, J.; Yamauchi, Y. Metal–organic framework-derived one-
dimensional porous or hollow carbon-based nanofibers for energy
storage and conversión. Mater. Horiz. 2018, 5, 394-407.
The Supporting Information is available free of charge on the
ACS Publications website.
Kinetic experiments, characterization of the catalysts and reaction
products.
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
*E-mail: francisco.garcia@kuleuven.be
9
4. (a) Santos, V. P.; Wezendonk, T. A.; Delgado Jaén, J. J.; Iulian
Dugulan, A.; Nasalevich, M. A.; Islam, H. U.; Chojecki, A.;
Sartipi, S.; Sun, X.; Hakeem, A. A.; Koeken, A. C. J.;
Ruitenbeek, M.; Davidian, T.; Meima, G. R.; Sankar, G.;
Kapteijn, F.; Makkee, M.; Gascon, J. Metal organic framework-
mediated synthesis of highly active and stable Fischer-Tropsch
catalysts. Nat. Commun. 2015, 6, 6451. (e) Sun, X.; Olivos
Suarez, A. I.; Meijerink, M.; van Deelen, T.; Ould-Chikh, S.;
Zečević, J.; de Jong, K. P.; Kapteijn, F., Gascon, J. Manufacture
of highly loaded silica-supported cobalt Fischer–Tropsch catalysts
from a metal organic framework. Nat. Commun. 2017, 8, 680. (f)
Ronda-Lloret, M.; Rico-Francés, S.; Sepúlveda-Escribano, A.;
Ramos-Fernandez, E. V. CuOx/CeO2 catalyst derived from metal
organic framework for reverse water-gas shift reaction. Appl.
Catal. A 2018, 562, 28–36. (g) Luz, I.; Soukri, M.; Lail, M.
Transformation of single MOF nanocrystals into single nanostruc-
tured catalysts within mesoporous supports: a platform for pio-
neer fluidized-nanoreactor hydrogen carriers. Chem. Commun.
2018, 54, 8462-8465.
5. (a) Alonso, F.; Arroyo, A.; Martín-García, I.; Moglie, Y.
Cross‐Dehydrogenative Coupling of Tertiary Amines and Termi-
nal Alkynes Catalyzed by Copper Nanoparticles on Zeolite. Adv.
Synth. Catal. 2015, 357, 3549-3561. (b) Mitrofanov, A. Y.; Mu-
rashkina, A. V.; Martín-García, I.; Alonso, F.; Beletskaya, I. P.
Formation of C–C, C–S and C–N bonds catalysed by supported
copper nanoparticles. Catal. Sci. Technol. 2017, 7, 4401-4412.
6. (a) Hattori, H. Heterogeneous Basic Catalysis. Chem. Rev. 1995,
95, 537-558. (b) Jammi, S.; Sakthivel, S.; Rout, L.; Mukherjee,
T.; Mandal, S.; Mitra, R.; Saha, P.; Punniyamurthy, T. CuO Na-
noparticles Catalyzed C−N, C−O, and C−S Cross-Coupling Reac-
tions: Scope and Mechanism. J. Org. Chem. 2009, 74, 5, 1971-
1976. (c) Son, S. I; Lee, W. K.; Choi, J.; Ha, H. J. Atom econom-
ical synthesis of oxindoles by metal-catalyzed intramolecular C–
C bond formation under solvent-free and aerobic conditions.
Green Chem. 2015, 17, 3306-3309. (d) Ojha, N. K.; Zyryanov, G.
V.; Majee, A.; Charushin, V. N.; Chupakhin, O. N.; Santra, S.
Copper nanoparticles as inexpensive and efficient catalyst: A val-
uable contribution in organic synthesis. Coord. Chem. Rev. 2017,
353, 1-57.(e) Rai, B.; Shuklaa, R. D.; Kumar, A. Zinc oxide-NP
catalyzed direct indolation of in situ generated bioactive tryptan-
thrin. Green Chem. 2018, 20, 822-826.
7. (a) Langston, J. W.; Irwin, I.; Langston, E. B.; Forno, L. S. Par-
gyline prevents MPTP-induced parkinsonism in primates. Science
1984, 225, 1480-1482. (b) Sun, L.; Liang, C.; Shirazian, S.; Zhou,
Y.; Miller, T.; Cui, J.; Fukuda, J. Y.; Chu, J. Y.; Nematalla, A.;
Wang, X.; Chen, H.; Sistla, A.; Luu, T. C.; Tang, F.; Wei, J.;
Tang, C. Discovery of 5-[5-Fluoro-2-oxo-1,2- dihydroindol-(3Z)-
ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic Acid (2-
Diethylaminoethyl)amide, a Novel Tyrosine Kinase Inhibitor
Targeting Vascular Endothelial and Platelet-Derived Growth Fac-
tor Receptor Tyrosine Kinase. J. Med. Chem. 2003, 46, 1116-
1119. (c) Zhao, Y; Aguilar, A.; Bernard, D.; Wang, S. Small-
Molecule Inhibitors of the MDM2–p53 Protein–Protein Interac-
tion (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment.
J. Med. Chem. 2015, 58, 1038-1052. (d) Rechac, V. L.; Cirujano,
F. G.; Corma, A.; Llabrés i Xamena, F. X. Diastereoselective syn-
thesis of pyranoquinolines over Zr-containing UiO-66 Metal Or-
ganic Frameworks. Eur. J. Inorg. Chem. 2016, 2016, 4512-5416.
8. (a) Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthe-
sis and Reactivity of Propargylamines in Organic Chemistry.
Chem. Rev. 2017, 117, 14091-14200; (b) Zindo, F. T.; Joubert, J.;
Malan, S. F. Propargylamine as functional moiety in the design of
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The authors declare no competing financial interests.
ACKNOWLEDGMENT
F.G.C. and N.M. acknowledge the European Commission-
Horizon 2020 for funding through Marie Sklodowska Curie Indi-
vidual Fellowships under the grant agreements numbers: 750391
(SINMOF) and 792943 (ZEOCO2). The XAS experiments were
performed on beamline BM26A at the European Synchrotron
Radiation Facility (ESRF), Grenoble, France. We are grateful to
D. Banerjee at the ESRF for providing assistance in using beam-
line and also to Cristina Almansa for performing the TEM analy-
sis of the samples at the research technical services of the Univer-
sity of Alicante in Spain.
REFERENCES
1. (a) Cirujano, F. G.; Lopez-Maya, E.; Rodriguez-Albelo, M.; Bar-
ea, E.; Navarro, J. A. R.; De Vos, D. E. Selective One‐Pot
Two‐Step C−C Bond Formation using Metal–Organic Frame-
works with Mild Basicity as Heterogeneous Catalysts. Chem-
CatChem. 2017, 9, 4019-4023. (b) Cirujano, F. G. MOFs vs. zeo-
lites: carbonyl activation with M (IV) catalytic sites. Catal. Sci. &
Technol. 2017, 7, 5482-5494. (c) Cirujano, F. G.; Luz, I.; Soukri,
M.; Van Goethem, C.; Vankelecom, I. F. J.; Lail, M.; De Vos, D.
E. Boosting the Catalytic Performance of Metal-Organic Frame-
works for Steroid Transformations by Confinement within a
Mesoporous Scaffold. Angew. Chem., Int. Ed. 2017, 56, 13302-
13306. (d) Cirujano, F. G.; Stalpaert, M.; Vos, D. E. De Vos.
Ionic liquids vs. microporous solids as reusable reaction media for
the catalytic C–H functionalization of indoles with alcohols.
Green Chem. 2018, 20, 2481-2485. (e) Cirujano, F. G.; Leo, P.;
Vercammen, J.; Smolders, S.; Orcajo, G.; De Vos, D. MOFs
Extend the Lifetime of Pd(II) Catalyst for Room Temperature
Alkenylation of Enamine Like Arenes. Adv. Synth. Catal. 2018,
360, 3872-3876. (f) Cirujano, F. G.; Lopez-Maya, E.; Navarro, J.
A. R.; De Vos, D. E. Pd(II)–Ni(II) Pyrazolate Framework as Ac-
tive and Recyclable Catalyst for the Hydroamination of Terminal
Alkynes. Top. Catal. 2018, 61, 1414-1423.
2. (a) Chui, S.-Y.; Lo, S. M.; Charmant, J. P.; Orpen, A. G.; Wil-
liams, I. D. A chemically functionalizable nanoporous material.
Science 1999, 283, 1148-1150. (b) Eddaoudi, M.; Kim, J.; Rosi,
N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. System-
atic Design of Pore Size and Functionality in Isoreticular MOFs
and Their Application in Methane Storage. Science 2002, 295,
469-472. (c) Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.;
Zhao, D.; Yan, Y. Synthesis, morphology control, and properties
of porous metal–organic coordination polymers. Microporous
Mesoporous Mater. 2003, 58, 105-114.
3. (a) Tang, J.; Yamauchi, Y. Carbon materials: MOF morphologies
in control. Nat. Chem. 2016, 8, 638-639. (b) Salunkhe, R. R.;
Young, C.; Tang, J.; Takei, T.; Ide, Y.; Kobayashi, N.; Yamauchi
Y. A high-performance supercapacitor cell based on ZIF-8-
derived nanoporous carbon using an organic electrolyte. Chem.
Commun. 2016, 52, 4764-4767. (c) Carrasco, J. A.; Romero, J.;
Abellán, G.; Hernández-Saz, J.;Molina, S. I.; Martí-Gastaldo, C.;
Coronado, E. Small-pore driven high capacitance in a hierarchical
carbon via carbonization of Ni-MOF-74 at low temperatures,
Chem. Commun. 2016, 52, 9141-9144. (d) Zhang, W.; Jiang, X.;
ACS Paragon Plus Environment