J. P. Dunne, M. Bockmeyer, M. Tacke
FULL PAPER
Metal Atoms and Small Clusters in Matrices, in: Chemistry and
Physics of Matrix-Isolated Species (Eds.: L. Andrews, M. Mos-
kowits), North Holland, Amsterdam, 1989, pp. 277Ϫ302.
W. E. Billups, M. M. Konars, R. H. Hauge, J. L. Margrave, J.
Am. Chem. Soc. 1980, 102, 7393.
was thought to be complete when a colour change from red to
yellow occurred. Water (10 mL) was added to this solution and the
organic phase separated. The aqueous phase was washed three
times with dichloromethane (10 mL). The combined organic ex-
tracts were dried with MgSO4 and the solvent was then removed
under reduced pressure, affording the derivatised compound as a
[8]
[9]
M. Tacke, Chem. Ber. 1995, 128, 91.
[10]
[11]
[12]
[13]
M. Tacke, Chem. Ber. 1996, 129, 1369.
M. Tacke, Eur. J. Inorg. Chem. 1998, 537.
1
brown oil. GC MS and H and 13C NMR spectroscopy were used
M. D. Curtis, A. L. Allred, J. Am. Chem. Soc. 1965, 12, 2554.
C. A. Walree, X. Y. van Lauteslager, A. M. Wageningen, J.
W. van Zwikker, L. A. Jenneskens, J. Organomet. Chem. 1995,
496, 117.
T. Cohen, I. H. Jeong, B. Murdryk, M. Bhupathy, M. M. A.
Awad, J. Org. Chem. 1990, 55, 1528.
R. S. Cooke, G. S. Hammond, J. Am. Chem. Soc. 1970, 92,
2739.
S. Harder, J. Boersma, L. Brandsma, G. P. M. v. Mier, J. A.
Kanters, J. Organomet. Chem. 1989, 364, 1.
A. Perez-Encabo, S. Perrio, A. M. Z. Slawin, S. E. Thomas, A.
T. Wierzchleyski, D. J. Williams, J. Chem. Soc., Perkin Trans.
1 1994, 629.
J. H. Bowie, S. O. Lawesson, J. Ø. Madson, G. Schroll, D. H.
Williams, J. Chem. Soc. B 1966, 951.
M. R. Detty, G. P. Wood, J. Org. Chem. 1980, 45, 80.
C. H. Yoder, K. F. Sheffey, R. Howell, R. E. Hess, C. Pascala,
C. D. Schaeffer, J. J. Zuckerman, J. Org. Chem. 1976, 1511.
F. T. Oakes, J. F. Sebastian, J. Organomet. Chem. 1978, 159,
363.
J. T. B. H. Jastrzebski, G. van Koten, M. Konijn, C. H. Stam,
J. Am. Chem. Soc. 1982, 104, 5490.
to identify the product.
Theoretical Methods Used in this Study: With a view to determining
the structures and reaction enthalpies of intermediates in the reac-
tion mechanism, the application of theoretical methods has proven
advantageous. For this purpose the program package used was
GAUSSIAN 98[25] implemented on a DEC Alpha work station
(500 MHz CPU/256 MB RAM) or an Origin 200 eight-processor
cluster (SGI 180 MHz CPU/2 GB RAM). Ab-initio calculations
were performed at the DFT level of theory (B3LYP) using the 6-
31G** basis set for C, H, O, N, S, P, and Li. Harmonic vibrational
frequencies, calculated at the same level, characterised stationary
points and gave the zero-point energy. The difference in the sum of
the electronic and the zero-point energies were interpreted as reac-
tion enthalpies at 0 K. LUMO energies for each aromatic com-
pound were obtained from geometry-optimised structures using
B3LYP/6-31G**.
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
Acknowledgments
K. Ohkata, K. Takee, K. Akiba, Bull. Chem. Soc. Jpn. 1985,
7, 1946.
The authors want to thank Prof. Dr. Dietmar Stalke for the access
to his NMR spectroscopy facilities in Würzburg. This work was
supported by the Centre for High-Performance Computing Ap-
plications at University College Dublin, Ireland.
[24]
[25]
D. F. McMillen, D. M. Golden, J. Phys. Chem. 1984, 88, 3175.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgom-
ery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Mil-
lam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J.
Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Po-
melli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P.
Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck,
K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A.
G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W.
Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Re-
plogle, J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc.,
Pittsburgh PA, 1998.
[1]
A. E. Shilov, G. B. Shul’pin, Chem. Rev. 1997, 97, 8; A. E.
Shilov, G. B. Shul’pin, Chem. Rev. 1997, 97, 2905.
[2]
B. A. Arndtsen, R. G. Bergmann, T. A. Mobley, T. H. Petersen,
Acc. Chem. Res. 1995, 28, 154.
[3]
R. H. Crabtree, Chem. Rev. 1995, 95, 987.
[4]
A. H. Janowicz, R. G. Bergman, J. Am. Chem. Soc. 1982,
104, 352.
A. H. Janowicz, R. G. Bergman, J. Am. Chem. Soc. 1983,
154, 3929.
[5]
[6]
N. S. Radu, S. L. Buchwald, B. Scott, C. J. Burns, Organometal-
lics 1996, 15, 19; N. S. Radu, S. L. Buchwald, B. Scott, C. J.
Burns, Organometallics 1996, 15, 3913.
R. H. Hauge, J. L. Margrave, Reactions of First-Row Transition
Received May 6, 2002
[7]
[I02230]
466
Eur. J. Inorg. Chem. 2003, 458Ϫ466