MrI-guided targeting delivery of doxorubicin
17. Singh R, Karakoti AS, Self W, Seal S, Singh S. Redox-sensitive
cerium oxide nanoparticles protect human keratinocytes from oxida-
tive stress induced by glutathione depletion. Langmuir. 2016;32(46):
12202–12211.
References
1. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology.
Nature. 2008;452(7187):580–589.
2. Mi P, Cabral H, Kokuryo D, et al. Gd-DTPA-loaded polymer-metal
complex micelles with high relaxivity for MR cancer imaging.
Biomaterials. 2013;34(2):492–500.
3. Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;
337(6092):303–305.
4. Xu W, Burke JF, Pilla S, Chen H, Jaskula-Sztul R, Gong S. Octreotide-
functionalized and resveratrol-loaded unimolecular micelles for targeted
neuroendocrine cancer therapy. Nanoscale. 2013;5(20):9924–9933.
5. Floyd WC, Klemm PJ, Smiles DE, et al. Conjugation effects of various
linkers on Gd(III) MRI contrast agents with dendrimers: optimizing
the hydroxypyridinonate (HOPO) ligands with nontoxic, degradable
esteramide (EA) dendrimers for high relaxivity. J Am Chem Soc. 2011;
133(8):2390–2393.
6. Li X, Zhou H, Yang L, et al. Enhancement of cell recognition in vitro
by dual-ligand cancer targeting gold nanoparticles. Biomaterials. 2011;
32(10):2540–2545.
7. Cheng ZL, Tsourkas A. Monitoring phospholipase A2 activity with
Gd-encapsulated phospholipid liposomes. Sci Rep. 2014;4:6958.
8. Li XY, Wu MY, Pan LM, Shi JL. Tumor vascular-targeted co-delivery
of anti-angiogenesis and chemotherapeutic agents by mesoporous
silica nanoparticle-based drug delivery system for synergetic therapy
of tumor. Int J Nanomedicine. 2016;11:93–105.
18. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for
drug delivery. Nat Mater. 2013;12(11):991–1003.
19. Wu B, Lu ST, Zhang LJ, Zhuo RX, Xu HB, Huang SW. Codelivery of
doxorubicin and triptolide with reduction-sensitive lipid-polymer hybrid
nanoparticles for in vitro and in vivo synergistic cancer treatment. Int J
Nanomedicine. 2017;12:1853–1862.
20. Vergote IB, Marth C, Coleman RL. Role of the folate receptor in ovar-
ian cancer treatment: evidence, mechanism, and clinical implications.
Cancer Metastasis Rev. 2015;34(1):41–52.
21. Satsangi A, Roy SS, Satsangi RK, et al. Synthesis of a novel, sequen-
tially active-targeted drug delivery nanoplatform for breast cancer
therapy. Biomaterials. 2015;59:88–101.
22. Shi D. Integrated multifunctional nanosystems for medical diagnosis
and treatment. Adv Funct Mater. 2009;19(21):3356–3373.
23. Pan J, Feng SS. Targeting and imaging cancer cells by folate-decorated,
quantum dots (QDs)-loaded nanoparticles of biodegradable polymers.
Biomaterials. 2009;30(6):1176–1183.
24. Kimpe K, Parac-Vogt Tatjana N, Laurent S, et al. Potential MRI
contrast agents based on micellar incorporation of amphiphilic
bis(alkylamide) derivatives of [(Gd−DTPA)(H2O)]2−. Eur J Inorg Chem.
2003;16:3021–3027.
25. Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T. Nano-
structured lipid carriers as multifunctional nanomedicine platform
for pulmonary co-delivery of anticancer drugs and siRNA. J Control
Release. 2013;171(3):349–357.
9. Li L, ten Hagen TLM, Haeri A, et al. A novel two-step mild hyper-
thermia for advanced liposomal chemotherapy. J Control Release. 2014;
174:202–208.
10. Wang S, Wang H, Liu Z, et al. Smart pH- and reduction-dual-responsive
folate-PEG-coated polymeric lipid vesicles for tumor-triggered targeted
drug delivery. Nanoscale. 2014;6(13):7635–7642.
26. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular perme-
ability and the EPR effect in macromolecular therapeutics: a review.
J Control Release. 2000;65(1):271–284.
11. Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/
nanoparticles in stimulus-responsive drug/gene delivery systems. Chem
Soc Rev. 2016;45(5):1457–1501.
12. El-Dakdouki MH, El-Boubbou K, Kamat M, et al. CD44 targeting
magnetic glyconanoparticles for atherosclerotic plaque imaging.
Pharm Res. 2014;31(6):1426–1437.
13. Wu B, Yu P, Cui C, et al. Folate-containing reduction-sensitive lipid-
polymer hybrid nanoparticles for targeted delivery of doxorubicin.
Biomater Sci. 2015;3(4):655–664.
14. Cui C, Xue YN, Wu M, et al. Cellular uptake, intracellular traffick-
ing, and antitumor efficacy of doxorubicin-loaded reduction-sensitive
micelles. Biomaterials. 2013;34(15):3858–3869.
15. Zhang LJ, Wu B, Zhou W, et al. Two-component reduction-sensitive
lipid-polymer hybrid nanoparticles for triggered drug release and
enhancedinvitroandinvivoanti-tumorefficacy. BiomaterSci. 2016;5(1):
98–110.
16. Chen W, Zhong P, Meng F, et al. Redox and pH-responsive degrad-
able micelles for dually activated intracellular anticancer drug release.
J Control Release. 2013;169(3):171–179.
27. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of
tumor blood vessels for drug delivery, factors involved, and limita-
tions and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):
136–151.
28. Oh JM, Choi SJ, Kim ST, Choy JH. Cellular uptake mechanism of
an inorganic nanovehicle and its drug conjugates: enhanced efficacy
due to clathrin-mediated endocytosis. Bioconjug Chem. 2006;17(6):
1411–1417.
29. SolomonI.Relaxationprocessesinasystemoftwospins.Phys Rev. 1955;
99(2):559–565.
30. Jung SH, Na K, Lee SA, Cho SH, Seong H, Shin BC. Gd(III)-DOTA-
modified sonosensitive liposomes for ultrasound-triggered release and
MR imaging. Nanoscale Res Lett. 2012;7(1):462.
31. Hak S, Sanders HMHF, Agrawal P, et al. A high relaxivity Gd(III)
DOTA-DSPE-based liposomal contrast agent for magnetic resonance
imaging. Eur J Pharm Biopharm. 2009;72(2):397–404.
32. Kielar F, Tei L, Terreno E, Botta M. Large relaxivity enhancement of
paramagnetic lipid nanoparticles by restricting the local motions of the
GdIII chelates. J Am Chem Soc. 2010;132(23):7836–7837.
International Journal of Nanomedicine 2017:12
6881