by X-ray crystallography.z Besides, all spectral data ([a]D,
NMR, HRMS) of the synthetic materials were identical to
those reported.
R. M. Williams, Angew. Chem., Int. Ed., 2003, 42, 3078; (d) K. C.
Nicolaou, S. A. Snyder, T. Montagnon and G. Vassilikogiannakis,
Angew. Chem., Int. Ed., 2002, 41, 1668.
3 (a) S. Qian and G. Zhao, Synlett, 2011, 722; (b) T. W. Fenlon,
D. Schwaebisch, A. V. W. Mayweg, V. Lee, R. M. Adlington and
J. E. Baldwin, Synlett, 2007, 2679; (c) Y. S. Lu and X.-S. Peng,
Org. Lett., 2011, 13, 2940; (d) G.-Z. Yue, L. Yang, C.-C. Yuan,
X.-L. Jiang and B. Liu, Org. Lett., 2011, 13, 5406; (e) Y. Liu and
F.-J. Nan, Tetrahedron Lett., 2010, 51, 1374.
In summary, we have accomplished the asymmetric total
synthesis of chloranthalactone F (1) in 14 steps from
Hajos–Wiechert ketone15 using CrO3-mediated oxidative
lactonization, and DDQ-involved oxidative enol-lactonization
as key steps. Additionally, the present work, which disclosed
the potential biosynthetic interconnectivity between chlor-
anthalactone F, 3 and 4, paves a consulting synthetic strategy
to the other dimers. Efforts in this direction are being actively
pursued in our lab and the results will be reported in due course.
This work was financially supported by National Natural
Science Foundation of China (No. 20172064, 203900502,
21032006), 973 program (2010CB833204), Shanghai Natural
Science Council (11XD1406400), and Excellent Young
Scholars Foundation of National Natural Science Foundation
of China (No. 20525208).
4 For the isolation of (+)-chloranthalactone
A
(3) and
(+)-shizukanolide (4), see: (a) J. Kawabata, S. Tahara,
J. Mizutani, A. Furusaki, N. Hashiba and T. Matsumoto, Agric.
Biol. Chem., 1979, 43, 885; (b) J. Kawabata, S. Tahara and
J. Mizutani, Agric. Biol. Chem., 1981, 45, 1447; (c) M. Uchida,
G. Kusano, Y. Kondo and S. Nozoe, Heterocycles, 1978, 9, 139.
5 (a) W. G. Salmond, M. A. Barta and J. L. Havens, J. Org. Chem.,
1978, 43, 2057; (b) S. Levin, R. R. Nani and S. E. Reisman, J. Am.
Chem. Soc., 2011, 133, 774; (c) M. S. Chen and M. C. White,
Science, 2007, 318, 783. For a recent review on C–H functionliza-
tion in total synthesis, see:; (d) W. R. Gutekunst and P. S. Baran,
Chem. Soc. Rev., 2011, 40, 1976.
6 (a) K. C. Nicolaou, D. J. Edmonds and P. G. Bulger, Angew.
Chem., Int. Ed., 2006, 45, 7134; (b) J. C. Wasilke, S. J. Obrey,
R. T. Baker and G. C. Bazan, Chem. Rev., 2005, 105, 1001;
(c) L. F. Tietze, Chem. Rev., 1996, 96, 115; (d) T. Gaich and
P. S. Baran, J. Org. Chem., 2010, 75, 4657; (e) K. C. Nicolaou and
J. S. Chen, Chem. Soc. Rev., 2009, 38, 2993.
Notes and references
z Crystal data: CCDC 839420:
M = 246.34, orthorhombic,
P2(1)2(1)2(1), a = 7.0704(14), b = 9.5189(19), c = 20.411(4) A,
b = 901, V = 1373.7(5) A3, Z = 4, D = 1.191 Mg mꢁ3, r =
0.077 mmꢁ1, F(000) = 536; 7496 reflections measured, of which 2691
7 (a) A. B. Charette and H. Lebel, J. Org. Chem., 1995, 60, 2966. For
a
review on substrate-directed chemical reactions, see:;
(b) A. H. Hoveyda, D. A. Evans and G. C. Fu, Chem. Rev.,
1993, 93, 1307.
were unique (Rint = 0.0215). 166 refined parameters, final R1 =
0.0390, wR2 = 0.1004 for reflections with I > 2s(I), GOF = 1.051.
Final largest diffraction peak and hole: 0.157 and ꢁ0.152 e Aꢁ3
.
CCDC 839421: M = 456.56, orthorhombic, P2(1)2(1)2(1), a =
8 (a) E. Nakamura, A. Hirai and M. Nakamura, J. Am. Chem. Soc.,
1998, 120, 5844; (b) A. B. Charette, A. Beauchemin and
S. Francoeur, J. Am. Chem. Soc., 2001, 123, 8139; (c) C. Zhao,
D. Wang and D. L. Phillips, J. Am. Chem. Soc., 2002, 124, 12903;
(d) M. Nakamura, A. Hirai and E. Nakamura, J. Am. Chem. Soc.,
2003, 125, 2341; (e) J. Long, H.-F. Du, K. Li and Y.-A. Shi,
Tetrahedron Lett., 2005, 46, 2737–2740.
11.7192(9),
V = 2449.3(3) A3, Z = 4, D = 1.238 Mg mꢁ3, r = 0.081 mmꢁ1
F(000) = 976; 13321 reflections measured, of which 4813 were unique
(Rint = 0.0219). 311 refined parameters, final R1 = 0.0376, wR2
b = 12.3720(9), c = 16.8928(12) A, b = 901,
,
=
0.0959 for reflections with I > 2s (I), GOF = 1.027. Final largest
diffraction peak and hole: 0.168 and ꢁ0.148 e Aꢁ3
.
9 D. B. Dess and J. C. Martin, J. Am. Chem. Soc., 1991, 113, 7277.
¨
10 C. Aıssa, J. Org. Chem., 2006, 71, 360.
1 (a) I. Kouno, A. Hirai, A. Fukushige, Z.-H. Jiang and T. Tanaka,
Chem. Pharm. Bull., 1999, 47, 1056; (b) J. Kawabata, Y. Fukushi,
S. Tahara and J. Mizutani, Phytochemistry, 1990, 29, 2332;
(c) B. M. Fraga, Nat. Prod. Rep., 2010, 27, 1681; (d) Z.-J. Zhan,
Y.-M. Ying, L.-F. Ma and W.-G. Shan, Nat. Prod. Rep., 2011,
28, 594; (e) X.-F. He, S. Zhang, R.-X. Zhu, S.-P. Yang, T. Yuan
and J.-M. Yue, Tetrahedron, 2011, 67, 3170; (f) O. E. Kwon,
H. S. Lee, S. W. Lee, K. Bae, K. Kim, M. Hayashi, M. C. Rho
and Y. K. Kim, J. Ethnopharmacol., 2006, 104, 270; (g) S.-P. Yang,
Z.-B. Gao, Y. Wu, G.-Y. Hu and J.-M. Yue, Tetrahedron, 2008,
64, 2027; (h) Y.-J. Xu, C.-P. Tang, C.-Q. Ke, J.-B. Zhang,
H. C. Weiss, E. R. Gesing and Y. Ye, J. Nat. Prod., 2007,
70, 1987; (i) C.-J. Li, D.-M. Zhang, Y.-M. Luo, S.-S. Yu, Y. Li
and Y. Lu, Phytochemistry, 2008, 69, 2867; (j) B. Wu, J. Chen,
H. Qu and Y. Cheng, J. Nat. Prod., 2008, 71, 877; (k) Y. Takeda,
H. Yamashita, T. Matsumoto and H. Terao, Phytochemistry, 1993,
33, 713; (l) H. Okamura, T. Iwagawa and M. Nakatani, Bull.
Chem. Soc. Jpn., 1995, 68, 3465; (m) S.-P. Yang, Z.-B. Gao,
F.-D. Wang, S.-G. Liao, H.-D. Chen, C.-R. Zhang, G.-Y. Hu
and J.-M. Yue, Org. Lett., 2007, 9, 903.
11 K. S. Kim, Y. H. Song, B. H. Lee and C. S. Hahn, J. Org. Chem.,
1986, 51, 404.
12 For selected reviews on chemoselectivity, see: (a) N. A. Afagh and
A. K. Yudin, Angew. Chem., Int. Ed., 2010, 49, 262;
(b) R. A. Shenvi, D. P. O’Malley and P. S. Baran, Acc. Chem.
Res., 2009, 42, 530.
13 (a) W.-S. Yu and Z.-D. Jin, J. Am. Chem. Soc., 2002, 124, 6576;
(b) T. K. M. Shing, Y.-Y. Yeung and P. L. Su, Org. Lett., 2006,
8, 3149; (c) J.-Q. Yu and E. J. Corey, J. Am. Chem. Soc., 2003,
125, 3232; (d) K. C. Nicolaou, Z. Yang, J.-J. Liu, H. Ueno,
P. G. Nanterment, P. K. Guy, C. F. Clalborne, J. Renaud,
E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Nature,
1994, 367, 630; (e) G. Mehta and D. S. Reddy, J. Chem. Soc.,
Perkin Trans. 1, 2000, 1399.
14 M. D. Lucia, F. Mainieri, L. Verotta, M. Maffei, L. Panzella,
O. Crescenzi, A. Napolitano, V. Barone, G. Appendino and
M. d’Ischia, J. Org. Chem., 2007, 72, 10123.
15 (a) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39, 1615;
(b) U. Eder, G. Sauer and R. Wiechert, Angew. Chem., Int. Ed.,
1971, 10, 496. (R)-Hajos–Wiechert ketone can be prepared from
2 For recent reviews on photochemical reactions, see: (a) T. Bach
and J. P. Hehn, Angew. Chem., Int. Ed., 2011, 50, 1000;
(b) N. Hoffmann, Chem. Rev., 2008, 108, 1052. For selected reviews
on biosynthetic Diels–Alder reactions, see:; (c) E. M. Stocking and
2-methyl-1,3-cyclopentane-dione substituting (D)-proline as
catalyst in the same sequence of reactions: Z. G. Hajos and
a
D. R. Parrish, Org. Synth., 1985, 63, 26.
c
3532 Chem. Commun., 2012, 48, 3530–3532
This journal is The Royal Society of Chemistry 2012