10.1002/cbic.202000564
ChemBioChem
[60] L. S. Jongbloed, N. Vogt, A. Sandleben, B. de Bruin, A. Klein, J. I. van der Vlugt, Nickel–
Alkyl Complexes with a Reactive PNC-Pincer Ligand, Eur. J. Inorg. Chem. 2018 2018, 2408‒
2418.
[61] C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev. 1994 94, 2319‒
2358.
[62] S. Krishan, S. Sahni, L. Y. W. Leck, P. J. Jansson, D. R. Richardson, Regulation of autophagy
and apoptosis by Dp44mT-mediated activation of AMPK in pancreatic cancer cells, Biochim.
Biophys. Acta, Mol. Basis Dis. 2020 1866, 165657 (1‒17).
,
,
,
,
[63] D. S. Kalinowski, C. Stefani, S. Toyokuni, T. Ganz, G. J. Anderson, N. V. Subramaniam, D.
Trinder, J. K. Olynyk, A. Chua, P. J. Jansson, S. Sahni, D. J.R. Lane, A. M. Merlot, Z.
Kovacevic, M. L.H. Huang, C. S. Lee, D. R. Richardson, Redox cycling metals: Pedaling their
roles in metabolism and their use in the development of novel therapeutics, Biochim. Biophys.
Acta 2016, 1863, 727‒748.
[64] P. J. Jansson, T. Yamagishi, A. Arvind, N. Seebacher, E. Gutierrez, A. Stacy, S. Maleki, D.
Sharp, S. Sahni, D. R. Richardson, Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone
(Dp44mT) Overcomes Multidrug Resistance by a Novel Mechanism Involving the Hijacking
of Lysosomal P-Glycoprotein (Pgp)*, J. Biol. Chem. 2015, 290, 9588‒9603.
[65] D. J. R. Lane, T. M. Mills, N. H. Shafie, A. M. Merlot, R. S. Moussa, D. S. Kalinowski, Z.
Kovacevic, D. R. Richardson, Expanding horizons in iron chelation and the treatment of
cancer: Role of iron in the regulation of ER stress and the epithelial–mesenchymal transition,
Biochim. Biophys. Acta 2014
[66] C. Cullinane, G. B. Deacon, P. R. Drago, A. P. Erven, P. C. Junk, J. Luu, G. Meyer, S. Schmitz,
I. Ott, J. Schur, L. K. Webster, A. Klein, Synthesis and Antiproliferative Activity of a Series of
New Platinum and Palladium Diphosphane Complexes, Dalton Trans. 2018 47, 1918–1932.
[67] V. Lingen, A. Lüning, A. Krest, G. B. Deacon, J. Schur, I. Ott, I. Pantenburg, G. Meyer, A.
, 1845, 166‒181.
,
Klein, Labile Pd-Sulphur and Pt-Sulphur Bonds in Organometallic Palladium and Platinum
Complexes [(COD)M(alkyl)(S-ligand)]n+ - A speciation study, J. Inorg. Biochem. 2016
, 165,
119−127.
[68] A. Lüning, M. Neugebauer, V. Lingen, A. Krest, K. Stirnat, G. B. Deacon, P. R. Drago, I. Ott, J.
Schur, I. Pantenburg, G. Meyer, A. Klein, Platinum Diolefin Complexes – Synthesis,
Structures and Cytotoxicity, Eur. J. Inorg. Chem. 2015 2015, 226−239.
[69] A. Lüning, J. Schur, L. Hamel, I. Ott, A. Klein, Strong Cytotoxicity of Organometallic
Platinum Complexes with Alkynyl Ligands, Organometallics 2013 32, 3662−3672.
[70] J. Schur, A. Lüning, A. Klein, R. W. Köster, I. Ott, Platinum alkynyl complexes: Cellular
uptake, inhibition of thioredoxin reductase and toxicity in zebrafish embryos, Inorg. Chim.
Acta, 2019 495, 118982 (1‒5).
[71] A. Gaála, G. Orgován, V. G. Mihucz, I. Pape, D. Ingerle, C. Streli, N. Szoboszlai, Metal
transport capabilities of anticancer copper chelators, J. Trace Elem. Med. Biol. 2018 47, 79-88.
[72] F. N. Akladios S. D. Andrew, C. J. Parkinson, Cytotoxic activity of expanded coordination bis
thiosemicarbazones and copper complexes thereof, J. Biol. Inorg. Chem. 2016 21, 931‒944.
[73] A. Gaál, V. G. Mihucz, S. Bösze, I. Szabó, M. Baranyi, P. Horváth, C. Streli, N. Szoboszlai,
Comparative in vitro investigation of anticancer copper chelating agents, Microchem. J. 2016
136, 227‒235.
,
,
,
,
‑
,
,
[74] E. Potuckova, H. Jansova, M. Machacek, A. Vavrova, P. Haskova, L. Tichotova, V.
Richardson, D. S. Kalinowski, D. R. Richardson, T. Simunek, Quantitative Analysis of the
Anti-Proliferative Activity of Combinations of Selected Iron-Chelating Agents and Clinically
Used Anti-Neoplastic Drugs, PloS One 2014
[75] D. B. Lovejoy, P. J. Jansson, U. T. Brunk, J. Wong, P. Ponka, D. R. Richardson, Antitumor
Activity of Metal-Chelating Compound Dp44mT Is Mediated by Formation of a Redox-
Active Copper Complex That Accumulates in Lysosomes, Cancer Res. 2011 71, 5871‒5880.
[76] E. Boros, A. B. Packard, Radioactive Transition Metals for Imaging and Therapy, Chem. Rev.
2019 119, 870−901.
[77] J. A. O'Donoghue, T. E. Wheldon, Targeted radiotherapy using Auger electron emitters,
Phys. Med. Biol. 1996 41, 1973‒1992.
[78] H. Obata, M. U. Khandaker, E. Furuta, K. Nagats, M.-R. Zhang, Excitation functions of
proton- and deuteron-induced nuclear reactions on natural iridium for the production of
191Pt, Appl. Radiat. Isot. 2018
137, 250‒260.
[79] S. M. Qaim, Nuclear data for production and medical application of radionuclides: Present
status and future needs, Nucl. Med. Biol. 2017 44, 31‒49.
[80] F. Buchegger, F. Perillo-Adamer, Y. M. Dupertuis, A. Bischof Delaloye, Auger radiation
targeted into DNA: a therapy perspective, Eur. J. Nucl. Med. Mol. Imaging 2006 33, 1352‒1363.
[81] S. M. Qaim, I. Spahn, Development of novel radionuclides for medical applications, J. Label.
Compd. Radiopharm. 2018 61, 126–140.
[82] W. Kaim, J. Fiedler. Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 2009
3373‒3382.
[83] W. Kaim, A. Klein (eds.), Spectroelectrochemistry, RSC Publishing Cambridge, UK, 2008
, 9, e88754 (1‒15).
,
,
,
,
,
,
,
,
38
,
.
[84] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008
64, 112‒122.
[85] G. M. Sheldrick, SHELX-97, Programs for Crystal Structure Analysis, Göttingen, 1997.
,
[86] L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 2012, 45, 849‒854.
22
This article is protected by copyright. All rights reserved.