5
810
Organometallics 2002, 21, 5810-5819
Hea d -on ver su s Sid e-on [5-5]Bitr ova cen es F ea tu r in g
Ben zen e a n d Na p h th a len e Un its a s Sp a cer s: How
π-Sta ck in g Affects Exch a n ge Cou p lin g a n d Red ox
†
Sp littin g
Christoph Elschenbroich,* Matthias Wolf, Olav Schiemann, Klaus Harms,
Olaf Burghaus, and J u¨ rgen Pebler
Fachbereich Chemie der Philipps-Universit a¨ t, D-35032 Marburg, Germany
Received J uly 2, 2002
The biradicals 1,8-di([5]trovacenyl)naphthalene (6), 1,5-di([5]trovacenyl)naphthalene (7),
and 1,3-di([5]trovacenyl)benzene (8) and the monoradical 1-[5]trovacenylnaphthalene (9) have
been prepared and studied by means of single-crystal X-ray diffraction (6, 8, 9), cyclic
voltammetry, EPR spectroscopy, and magnetic susceptometry. Comparison of the magnetic
properties of 6-9 reveals that π-stacking, as encountered in 6, largely enhances exchange
2
interaction between the two singly occupied V(3d
z
) orbitals. The effect of π-stacking on the
electrochemical properties, as manifested in the redox splitting between consecutive electron
transfer steps, is less pronounced. Redox splittings δE1/2 for consecutive reductions exceed
those for oxidations of binuclear trovacenes, δE1/2(2+/+, +/0) being apparent for π-stacked
2
2
6
z z
only. Because of the orthogonality of the metal-centered redox orbitals V1(d ) and V2(d )
5
and the η -cyclopentadienyl π-orbitals, electro- and magnetocommunication are indirect
processes. Electrocommunication rests on changes of the donor/acceptor properties of
V1,V2 caused by oxidation or reduction which govern metal-ligand charge distribution; the
latter changes are transmitted via the spacer. Magnetocommunication takes the form of
antiferromagnetic coupling, which can be traced to spin polarization of filled π-orbitals of
2
the bridge by orthogonal singly occupied vanadium 3d
z
orbitals.
In tr od u ction
Spectroscopic and electrochemical manifestations of
asset of binuclear metallocenes of type 3 is the possibil-
ity to use central-metal related spectroscopic techniques
to gauge the extent of stacking interactions; the respec-
tive methods have recently been reviewed.
Our own contributions to the study of intramolecular
π-stacking have been explored for organic as well as for
7
1
-2
3
organometallic molecules, the compounds 1,
2, and
4
3
,4 may serve as representative examples. Remarkably,
communication are based on the use of trovacene
π-π interactions between stacked porphyrin rings and
their metal complexes, which may lead to dimer forma-
tion, have aroused considerable interest because of their
possible relation to enzyme function. The nature of π-π
7
[
(
(tropylium)vanadium(cyclopentadienyl), (η -C7H7)V-
5
1,8
η -C5H5)] 5 as a probe. Its suitability derives from
the orbitally nondegenerate ground state A1, the pres-
ence of the magnetic nucleus V (I ) 7/2) in high
2
51
5
interactions in general and of dimeric cofacial porphy-
abundance (99.75%), the attendant favorable EPR prop-
erties, comparatively low sensitivity to air, and the ease
of functionalization. Therefore, access to a large variety
of di- and oligonuclear species featuring diverse spacers
is envisaged. Here we report on the synthesis and
characterization of two regioisomers in which [5]tro-
6
rins in particular has been discussed extensively. An
†
Dedicated to Prof. G. Huttner on the occasion of his 65th birthday.
*
To whom correspondence should be addressed. E-mail: eb@
chemie.uni-marburg.de.
1) Trovacene Chemistry. 4. Part 3: Elschenbroich, C.; Wolf, M.;
Burghaus, O.; Harms, K.; Pebler, J . Eur. J . Inorg. Chem. 1999, 2173.
(
(
(
2) Gerson, F. Topics Curr. Chem. 1983, 115, 57.
3) (a) Boekelheide, V. Pure Appl. Chem. 1986, 58, 1. (b) Voegeli, R.
(6) (a) Scheidt, W. R.; Geiger, D. K.; Lee, Y. L.; Reed, C. A.; Lang,
G. J . Am. Chem. Soc. 1985, 107, 5693. (b) Gupta, G. P.; Lang, G.;
Scheidt, R. W.; Geiger, D. K. J . Chem. Phys. 1985, 83, 5945. (c) Scheidt,
W. R.; Lee, J . L. Struct. Bonding (Berlin) 1987, 64, 1. (d) Song, H.;
Reed, C. A.; Scheidt, W. R. J . Am. Chem. Soc. 1989, 111, 6867. (e)
Song, H.; Rath, N. P.; Reed, C. A.; Scheidt, W. R. Inorg. Chem. 1989,
28, 1839. (f) LeMest, Y.; L’Her, M.; Hendricks, N. H.; Kim, K.; Collman,
J . P. Inorg. Chem. 1992, 31, 835. (g) Fletcher, J . T.; Therien, M. J .
Inorg. Chem. 2002, 41, 331. (h) Gupta, G. P.; Lang, G.; Scheidt, W. R.;
Geiger, D. K.; Reed, C. A. J . Chem. Phys. 1985, 83, 5945.
H.; Kang, H. C.; Finke, R. G.; Boekelheide, V. J . Am. Chem. Soc. 1986,
08, 7010. (c) Schr o¨ der, A.; Mekelburger, H.-B.; V o¨ gtle, F. Top. Curr.
Chem. 1994, 172, 41. (d) Kang, H. C.; Plitzko, K.-D.; Boekelheide, V.;
Higuchi, H.; Misumi, S. J . Organomet. Chem. 1987, 321, 79.
1
(4) Lee, M.-T.; Foxman, B. M.; Rosenblum, M. Organometallics 1985,
4
, 539. (b) Arnold, R.; Foxman, B. M.; Rosenblum, M.; Euler, W. B.
Organometallics 1988, 7, 1253. (c) Herber, R. H.; Nowik, I.; Rosenblum,
M. Organometallics 2002, 21, 846.
(
5) (a) Misumi, S.; Otsubo, T. Acc. Chem. Res. 1978, 11, 251. (b)
Heilbronner, E.; Yang, Z. Top. Curr. Chem. 1983, 115, 1. (c) Hunter,
C. A.; Meah, M. N.; Sanders, J . K. M. J . Am. Chem. Soc. 1990, 112,
(7) Barlow, S.; O’Hare, D. Chem. Rev. 1997, 97, 637.
(8) (a) Elschenbroich, Ch.; Bilger, E.; Metz, B. Organometallics 1991,
10, 2823. (b) Elschenbroich, Ch.; Schiemann, O.; Burghaus, O.; Harms,
K. J . Am. Chem. Soc. 1997, 119, 7452. (c) Elschenbroich, Ch.;
Schiemann, O.; Burghaus, O.; Harms, K.; Pebler, J . Organometallics
1999, 18, 3273. (d) Elschenbroich, Ch.; Plackmeyer, J .; Harms, K.;
Burghaus, O.; Pebler, J . Organometallics, submitted.
5
773. (d) Cozzi, F.; Cinquini, M.; Annunziata, R.; Siegel, J . S. J . Am.
Chem. Soc. 1993, 115, 5330. (e) Hunter, C. A. Chem. Soc. Rev. 1994,
7, 101. (f) Hunter, C. A. J . Chem. Soc., Perkin Trans. 2 2001, 651. (g)
2
Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J . Am.
Chem. Soc. 2002, 124, 104.
1
0.1021/om020520y CCC: $22.00 © 2002 American Chemical Society
Publication on Web 11/20/2002